Лаб_работы / Лабораторная_работа_4 / Системы счисления. Системы исчисления какие бывают


система счисления. Виды систем счисления

В курсе информатики, вне зависимости, школьном или университетском, особое место уделяется такому понятию как системы счисления. Как правило, на него выделяют несколько уроков или практических занятий. Основная цель - не только усвоить основные понятия темы, изучить виды систем счисления, но и познакомиться с двоичной, восьмеричной и шестнадцатеричной арифметикой.

Что это значит?

Начнем с определения основного понятия. Как отмечает учебник "Информатика", система счисления - это система записи чисел, в которой используется специальный алфавит или определенный набор цифр.

перевод систем счисления

В зависимости от того, меняется ли значение цифры от ее положения в числе, выделяют две: позиционную и непозиционную системы счисления.

В позиционных системах значение цифры меняется вместе с ее положением в числе. Так, если взять число 234, то цифра 4 в ней означает единицы, если же рассмотреть число 243, то тут она будет уже означать десятки, а не единицы.

В непозиционных системах значение цифры статично, вне зависимости от ее положения в числе. Наиболее яркий пример – палочковая система, где каждая единица обозначается с помощью черточки. Неважно, куда вы припишите палочку, значение числа измениться лишь на единицу.

Непозиционные системы

К непозиционным системам счисления относятся:

  1. Единичная система, которая считается одной из первых. В ней вместо цифр использовались палочки. Чем их было больше, тем больше было значение числа. Встретить пример чисел, записанных таким образом, можно в фильмах, где речь идет о потерянных в море людях, заключенных, которые отмечают каждый день с помощью зарубок на камне или дереве.
  2. Римская, в которой вместо цифр использовались латинские буквы. Используя их, можно записать любое число. При этом его значение определялось с помощью суммы и разницы цифр, из которых состояло число. Если слева от цифры находилось меньшее число, то левая цифра вычиталась из правой, а если справа цифра была меньше или равна цифре слева, то их значения суммировались. Например, число 11 записывалось как XI, а 9 – IX.
  3. Буквенные, в которых числа обозначались с помощью алфавита того или иного языка. Одной из них считается славянская система, в которой ряд букв имел не только фонетическое, но и числовое значение.
  4. Вавилонская система счисления, в которой использовалось всего два обозначения для записи – клинья и стрелочки.
  5. В Египте тоже использовались специальные символы для обозначения чисел. При записи числа каждый символ мог использоваться не более девяти раз.

Позиционные системы

Большое внимание уделяется в информатике позиционным системам счисления. К ним относятся следующие:

  • двоичная;
  • восьмеричная;
  • десятичная;
  • шестнадцатеричная;
  • шестидесятеричная, используемая при счете времени (к примеру, в минуте - 60 секунд, в часе - 60 минут).

Каждая из них обладает своим алфавитом для записи, правилами перевода и выполнения арифметических операций.

таблица систем счисления

Десятичная система

Данная система является для нас наиболее привычной. В ней используются цифры от 0 до 9 для записи чисел. Они также носят название арабских. В зависимости от положения цифры в числе, она может обозначать разные разряды – единицы, десятки, сотни, тысячи или миллионы. Ее мы пользуемся повсеместно, знаем основные правила, по которым производятся арифметические операции над числами.

Двоичная система

Одна из основных систем счисления в информатике – двоичная. Ее простота позволяет компьютеру производить громоздкие вычисления в несколько раз быстрее, нежели в десятичной системе.

Для записи чисел используется лишь две цифры – 0 и 1. При этом, в зависимости от положения 0 или 1 в числе, его значение будет меняться.

Изначально именно с помощью двоичного кода компьютеры получали всю необходимую информацию. При этом, единица означала наличие сигнала, передаваемого с помощью напряжения, а ноль – его отсутствие.

виды систем счисления

Восьмеричная система

Еще одна известная компьютерная система счисления, в которой применяются цифры от 0 до 7. Применялась в основном в тех областях знаний, которые связаны с цифровыми устройствами. Но в последнее время она употребляется значительно реже, так как на смену ей пришла шестнадцатеричная система счисления.

Двоично-десятичная система

Представление больших чисел в двоичной системе для человека – процесс довольно сложный. Для его упрощения была разработана двоично-десятичная система счисления. Используется она обычно в электронных часах, калькуляторах. В данной системе из десятичной системы в двоичную преобразуется не все число, а каждая цифра переводится в соответствующий ей набор нулей и единиц в двоичной системе. Аналогично происходит и перевод из двоичной системы в десятичную. Каждая цифра, представленная в виде четырехзначного набора нулей и единиц, переводится в цифру десятичной системы счисления. В принципе, нет ничего сложного.

Для работы с числам в данном случае пригодится таблица систем счисления, в которой будет указано соответствие между цифрами и их двоичным кодом.

Шестнадцатеричная система

В последнее время все большую популярность приобретает в программировании и информатике система счисления шестнадцатеричная. В ней используются не только цифры от 0 до 9, но и ряд латинских букв – A, B, C, D, E, F.

сложение систем счисления

При этом, каждая из букв имеет свое значение, так A=10, B=11, C=12 и так далее. Каждое число представляется в виде набора из четырех знаков: 001F.

Перевод чисел: из десятичной в двоичную

Перевод в системах счисления чисел происходит по определенным правилам. Наиболее часто встречается перевод из двоичной в десятичную систему и наоборот.

Для того, чтобы перевести число из десятичной системы в двоичную, необходимо последовательно делить его на основание системы счисления, то есть, число два. При этом, остаток от каждого деления необходимо фиксировать. Так будет происходить до тех пор, пока остаток от деления не будет меньше или равен единице. Проводить вычисления лучше всего в столбик. Затем полученные остатки от деления записываются в строку в обратном порядке.

двоично десятичная система счисления

Например, переведем число 9 в двоичную систему:

Делим 9, так как число не делится нацело, то берем число 8, остаток будет 9 – 1 = 1.

После деления 8 на 2 получаем 4. Снова делим его, так как число делится нацело – получаем в остатке 4 – 4 = 0.

Проводим ту же операцию с 2. В остатке получаем 0.

В итоге деления у нас получается 1.

Далее записываем все полученные нами остатки в обратном порядке, начиная с итога деления: 1001.

Вне зависимости от итоговой системы счисления, перевод чисел из десятичной в любую другую будет происходить по принципу деления числа на основу позиционной системы.

Перевод чисел: из двоичной в десятичную

Довольно легко переводить числа и в десятичную систему счисления из двоичной. Для этого достаточно знать правила возведения чисел в степень. В данном случае, в степень двойки.

Алгоритм перевода следующий: каждую цифру из кода двоичного числа необходимо умножить на двойку, причем, первая двойка будет в степени m-1, вторая – m-2 и так далее, где m – количество цифр в коде. Затем сложить результаты сложения, получив целое число.

Для школьников этот алгоритм можно объяснить проще:

Для начала берем и записываем каждую цифру, умноженную на двойку, затем проставляем степень двойки с конца, начиная с нуля. Потом складываем полученное число.

системы счисления перевод чисел

Для примера разберем с вами полученное ранее число 1001, переведя его в десятичную систему, и заодно проверим правильность наших вычислений.

Выглядеть это будет следующим образом:

1*23 + 0*22+0*21+1*20= 8+0+0+1 =9.

При изучении данной темы удобно использовать таблицу со степенями двойки. Это существенно уменьшит количество времени, необходимое для проведения вычислений.

Другие варианты перевода

В некоторых случаях перевод может осуществляться между двоичной и восьмеричной системой счисления, двоичной и шестнадцатеричной. В таком случае можно пользоваться специальными таблицами или же запустить на компьютере приложение калькулятор, выбрав во вкладке вид вариант «Программист».

Арифметические операции

Вне зависимости от того, в каком виде представлено число, с ним можно проводить привычные для нас вычисления. Это может быть деление и умножение, вычитание и сложение в системе счисления, которую вы выбрали. Конечно, для каждой из них действуют свои правила.

Так для двоичной системы разработаны свои таблицы для каждой из операций. Такие же таблицы используются и в других позиционных системах.

Заучивать их необязательно – достаточно просто распечатать и иметь под рукой. Также можно воспользоваться калькулятором на ПК.

информатика система счисления

Одна из важнейших тем в информатике – система счисления. Знание этой темы, понимание алгоритмов перевода чисел из одной системы в другую – залог того, что вы сможете разобраться в более сложных темах, таких как алгоритмизация и программирование и сможете самостоятельно написать свою первую программу.

fb.ru

Системы счисления: Какие бывают системы счисления

                    Какие бывают системы счисления

Позиционные системы счисления

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман. , где  — это целые числа, называемые цифрами, удовлетворяющие неравенству . Каждая степень  в такой записи называется весовым коэффициентом разряда. Старшинство разрядов и соответствующих им цифр определяется значением показателя  (номером разряда). Обычно, в ненулевых числах , левые нули опускаются. Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число записывают в виде последовательности его -ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:

Например, число сто три представляется в десятичной системе счисления в виде:

Наиболее употребляемыми в настоящее время позиционными системами являются:

В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.

Смешанные системы счисления

Смешанная система счисления является обобщением -ричной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел , и каждое число  в ней представляется как линейная комбинация: , где на коэффициенты , называемые как и прежде цифрами, накладываются некоторые ограничения. Записью числа  в смешанной системе счисления называется перечисление его цифр в порядке уменьшения индекса , начиная с первого ненулевого.

[править]Факториальная система счисления

В факториальной системе счисления основаниями являются последовательность факториалов , и каждое натуральное число  представляется в виде: , где .

Факториальная система счисления используется при декодировании перестановок списками инверсий: имея номер перестановки, можно воспроизвести её саму следующим образом: число, на единицу меньшее номера (нумерация начинается с нуля) записывается в факториальной системе счисления, при этом коэффициент при числе i! будет обозначать число инверсий для элемента i+1 в том множестве, в котором производятся перестановки (число элементов меньших i+1, но стоящих правее его в искомой перестановке)

[править]Фибоначчиева система счисления

Фибоначчиева система счисления основывается на числах Фибоначчи. Каждое натуральное число  в ней представляется в виде: , где  — числа Фибоначчи, , при этом в коэффициентах  есть конечное количество единиц и не встречаются две единицы подряд.

[править]Непозиционные системы счисления

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.

[править]Биномиальная система счисления

, где .

[править]

[править]Система счисления Штерна–Броко

Система счисления Штерна–Броко — способ записи положительных рациональных чисел, основанный на дереве Штерна–Броко.

[править]Системы счисления разных народов

[править]Единичная система счисления

По-видимому, хронологически первая система счисления каждого народа, овладевшего счётом. Натуральное число изображается путём повторения одного и того же знака (чёрточки или точки). Например, чтобы изобразить число 26, нужно провести 26 чёрточек (или сделать 26 засечек на кости, камне и т.д.). Впоследствии, ради удобства восприятия больших чисел, эти знаки группируются по три или по пять. Затем равнообъёмные группы знаков начинают заменяться каким-либо новым знаком - так возникают прообразы будущих цифр.

[править]Древнеегипетская система счисления

Древнеегипетская десятичная непозиционная система счисления возникла во второй половине третьего тысячелетия до н. э. Для обозначения чисел 0, 1, 10, 10², 10³, 104, 105, 106, 107 использовались специальные цифры. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из цифр повторялась не более девяти раз. Значение числа равно простой сумме значений цифр, участвующих в его записи.[1]

[править]Вавилонская система счисления

[править]Алфавитные системы счисления

Алфавитными системами счисления пользовались древние армяне, грузины, греки (ионическая система счисления), арабы (абджадия), евреи (см. гематрия) и другие народы Ближнего Востока. В славянских богослужебных книгах греческая алфавитная система была переведена на буквы кириллицы.[1]
[править]Еврейская система счисления
[править]

[править]Римская система счисления

Каноническим примером почти непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы:I обозначает 1,V — 5,X — 10,L — 50,C — 100,D — 500,M — 1000

Например, II = 1 + 1 = 2здесь символ I обозначает 1 независимо от места в числе.

На самом деле, римская система не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё, например:

IV = 4, в то время как:VI = 6

[править]Система счисления майя

Майя использовали 20-ричную систему счисления за одним исключением: во втором разряде было не 20, а 18 ступеней, то есть за числом (17)(19) сразу следовало число (1)(0)(0). Это было сделано для облегчения расчётов календарного цикла, поскольку (1)(0)(0) = 360 примерно равно числу дней в солнечном году. Для записи основными знаками были точки (единицы) и отрезки (пятёрки).

[править]

calutcaia-com.blogspot.com

Лекция 3 Системы счисления

 3.1. Основные понятия систем счисления

 3.2. Виды систем счисления

 3.3. Правила перевода чисел из одной системы счисления в другую

 3.4. Иллюстрированный вспомогательный материал

 3.5. Тестирование

 3.6. Контрольные вопросы

Разные народы в разные времена использовали разные системы счисления. Следы древних систем счета встречаются и сегодня в культуре многих народов. К древнему Вавилону восходит деление часа на 60 минут и угла на 360 градусов. К Древнему Риму - традиция записывать в римской записи числа I, II, III и т. д. К англосаксам - счет дюжинами: в году 12 месяцев, в футе 12 дюймов, сутки делятся на 2 периода по 12 часов.

По современным данным, развитые системы нумерации впервые появились в древнем Египте. Для записи чисел египтяне применяли иероглифы один, десять, сто, тысяча и т.д. Все остальные числа записывались с помощью этих иероглифов и операции сложения. Недостатки этой системы - невозможность записи больших чисел и громоздкость.

В конце концов, самой популярной системой счисления оказалась десятичная система. Десятичная система счисления пришла из Индии, где она появилась не позднее VI в. н. э. В ней всего 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 но информацию несет не только цифра, но также и место позиция, на которой она стоит. В числе 444 три одинаковых цифры обозначают количество и единиц, и десятков, и сотен. А вот в числе 400 первая цифра обозначает число сотен, два 0 сами по себе вклад в число не дают, а нужны лишь для указания позиции цифры 4.

3.1. Основные понятия систем счисления

Система счисления - это совокупность правил и приемов записи чисел с помощью набора цифровых знаков. Количество цифр, необходимых для записи числа в системе, называют основанием системы счисления. Основание системы записывается в справа числа в нижнем индексе: ;;и т. д.

Различают два типа систем счисления:

позиционные, когда значение каждой цифры числа определяется ее позицией в записи числа;

непозиционные, когда значение цифры в числе не зависит от ее места в записи числа.

Примером непозиционной системы счисления является римская: числа IX, IV, XV и т.д.

Примером позиционной системы счисления является десятичная система, используемая повседневно.

Любое целое число в позиционной системе можно записать в форме многочлена:

где S - основание системы счисления;

- цифры числа, записанного в данной системе счисления;

n - количество разрядов числа.

Пример. Число запишется в форме многочлена следующим образом:

3.2. Виды систем счисления

Римская система счисленияявляется непозиционной системой. В ней для записи чисел используются буквы латинского алфавита. При этом буква I всегда означает единицу, буква - V пять, X - десять, L - пятьдесят, C - сто, D - пятьсот, M - тысячу и т.д. Например, число 264 записывается в виде CCLXIV. При записи чисел в римской системе счисления значением числа является алгебраическая сумма цифр, в него входящих. При этом цифры в записи числа следуют, как правило, в порядке убывания их значений, и не разрешается записывать рядом более трех одинаковых цифр. В том случае, когда за цифрой с большим значением следует цифра с меньшим, ее вклад в значение числа в целом является отрицательным. Типичные примеры, иллюстрирующие общие правила записи чисел в римской система счисления, приведены в таблице.

Таблица 2. Запись чисел в римской системе счисления

1

2

3

4

5

I

II

III

IV

V

6

7

8

9

10

VI

VII

VIII

IX

X

11

13

18

19

22

XI

XIII

XVIII

XIX

XXII

34

39

40

60

99

XXXIV

XXXIX

XL

LX

XCIX

200

438

649

999

1207

CC

CDXXXVIII

DCXLIX

CMXCIX

MCCVII

2045

3555

3678

3900

3999

MMXLV

MMMDLV

MMMDCLXXVIII

MMMCM

MMMCMXCIX

 

Недостатком римской системы является отсутствие формальных правил записи чисел и, соответственно, арифметических действий с многозначными числами. По причине неудобства и большой сложности в настоящее время римская система счисления используется там, где это действительно удобно: в литературе (нумерация глав), в оформлении документов (серия паспорта, ценных бумаг и др.), в декоративных целях на циферблате часов и в ряде других случаев.

Десятичня система счисления– в настоящее время наиболее известная и используемая. Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника. Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Люди привыкли считать в десятичной системе счисления, потому что у них по 10 пальцев на руках.

Древнее изображение десятичных цифр (рис. 1) не случайно: каждая цифра обозначает число по количеству углов в ней. Например, 0 - углов нет, 1 - один угол, 2 - два угла и т.д. Написание десятичных цифр претерпело существенные изменения. Форма, которой мы пользуемся, установилась в XVI веке.

Десятичная система впервые появилась в Индии примерно в VI веке новой эры. Индийская нумерация использовала девять числовых символов и нуль для обозначения пустой позиции. В ранних индийских рукописях, дошедших до нас, числа записывались в обратном порядке - наиболее значимая цифра ставилась справа. Но вскоре стало правилом располагать такую цифру с левой стороны. Особое значение придавалось нулевому символу, который вводился для позиционной системы обозначений. Индийская нумерация, включая нуль, дошла и до нашего времени. В Европе индусские приёмы десятичной арифметики получили распространение в начале ХIII в. благодаря работам итальянского математика Леонардо Пизанского (Фибоначчи). Европейцы заимствовали индийскую систему счисления у арабов, назвав ее арабской. Это исторически неправильное название удерживается и поныне.

Десятичная система использует десять цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также символы “+” и “–” для обозначения знака числа и запятую или точку для разделения целой и дробной частей числа.

В вычислительных машинах используется двоичная система счисления, её основание - число 2. Для записи чисел в этой системе используют только две цифры - 0 и 1. Вопреки распространенному заблуждению, двоичная система счисления была придумана не инженерами-конструкторами ЭВМ, а математиками и философами задолго до появления компьютеров, еще в ХVII - ХIХ веках. Первое опубликованное обсуждение двоичной системы счисления принадлежит испанскому священнику Хуану Карамюэлю Лобковицу (1670 г.). Всеобщее внимание к этой системе привлекла статья немецкого математика Готфрида Вильгельма Лейбница, опубликованная в 1703 г. В ней пояснялись двоичные операции сложения, вычитания, умножения и деления. Лейбниц не рекомендовал использовать эту систему для практических вычислений, но подчёркивал её важность для теоретических исследований. Со временем двоичная система счисления становится хорошо известной и получает развитие.

Выбор двоичной системы для применения в вычислительной технике объясняется тем, что электронные элементы - триггеры, из которых состоят микросхемы ЭВМ, могут находиться только в двух рабочих состояниях.

С помощью двоичной системы кодирования можно зафиксировать любые данные и знания. Это легко понять, если вспомнить принцип кодирования и передачи информации с помощью азбуки Морзе. Телеграфист, используя только два символа этой азбуки - точки и тире, может передать практически любой текст.

Двоичная система удобна для компьютера, но неудобна для человека: числа получаются длинными и их трудно записывать и запоминать. Конечно, можно перевести число в десятичную систему и записывать в таком виде, а потом, когда понадобится перевести обратно, но все эти переводы трудоёмки. Поэтому применяются системы счисления, родственные двоичной - восьмеричная и шестнадцатеричная. Для записи чисел в этих системах требуется соответственно 8 и 16 цифр. В 16-теричной первые 10 цифр общие, а дальше используют заглавные латинские буквы. Шестнадцатеричная цифра A соответствует десятеричному числу 10, шестнадцатеричная B – десятичному числу 11 и т. д. Использование этих систем объясняется тем, что переход к записи числа в любой из этих систем от его двоичной записи очень прост. Ниже приведена таблица соответствия чисел, записанных в разных системах.

Таблица 3. Соответствие чисел, записанных в различных системах счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

1

001

1

1

2

010

2

2

3

011

3

3

4

100

4

4

5

101

5

5

6

110

6

6

7

111

7

7

8

1000

10

8

9

1001

11

9

10

1010

12

A

11

1011

13

B

12

1100

14

C

13

1101

15

D

14

1110

16

E

15

1111

17

F

16

10000

20

10

studfiles.net

Лекция № 2. Системы счисления

    1. Позиционные и непозиционные системы

Системой счисления называется метод записи чисел в виде комбинаций графических символов. Число – это некоторая абстрактная сущность для описания количества, а цифры – знаки, используемые для записи чисел. В наше время самыми распространёнными являются арабские цифры, менее распространены римские цифры. Система римских цифр основана на употреблении особых знаков для десятичных разрядов: I=1, X=10, C=100, M=1000 и их половин: V=5, L=50, D=500. Существует множество других способов записи чисел. Например, древние греки использовали для этой цели буквы своего алфавита, а древние шумеры – клинописные знаки. Существуют позиционные и непозиционные системы счисления.

Позиционная система счисления – система записи чисел в виде последовательности символов, в которой численное значение каждого символа зависит от его положения в записи.

Примером позиционной системы является хорошо известная десятичная система счисления. Примером непозиционной системы – римская система. Выполнение арифметических действий над числами в непозиционной системе весьма неудобно. Поэтому позиционные системы в настоящее время получили наибольшее распространение.

Изобретение позиционной системы приписывается шумерам и вавилонянам. Затем она была развита индусами. В средневековой Европе позиционная десятичная система появилась благодаря итальянским купцам, которые заимствовали её у мусульман. В 9 веке великий арабский математик Мухаммед ибн Мусе Аль Хорезми впервые описал десятичную систему исчисления и правила выполнения простых арифметических действий в ней. В 12 веке его работы были переведены на латинский язык, благодаря чему Европа смогла познакомиться с этим изобретением человеческого ума.

    1. Десятичная система

Существуют различные позиционные системы исчисления, отличающиеся между собой количеством используемых знаков. Чтобы различать числа в разных системах исчисления, в конце числа ставят индекс – символ системы. Например, запись означает обычное число 483,56 в десятичной системе счисления, а записьозначает совсем другое число (хотя и похожее по виду) вшестнадцатеричной системе счисления (в десятичной оно равно 1155,335938). Если из контекста понятно, что используется только десятичная система (или только шестнадцатеричная, или какая-нибудь другая), то при записи числа индекс обычно опускают.

Десятичная система использует десять различных знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – которые обозначают натуральные числа в порядке их возрастания от нуля до девяти. Число 10 является основанием десятичной системы. Оно не имеет специального знака, а обозначается с помощью двух первых символов этой системы.

Например, запись 483,56 в десятичной системе означает, что данное число складывается из четырех сотен (), восьми десяток (), трех единиц (), пяти десятых частей единицы () и шести сотых частей единицы (). Другими словами, мы можем записать:

. (2.1)

    1. Двоичная система

Двоичная (бинарная) система счисления является самой простой из всех позиционных систем. Она содержит только два символа 0 и 1, и используется в компьютерной технике благодаря своей простоте и высокой надежности. Двоичная система была изобретена великим немецким ученым Готфридом Вильгельмом Лейбницем (1646-1716), который использовал ее в созданной им механической счетной машине. В первом столбце табл. 2.1 приведены десятичные числа, а во втором – соответствующие им двоичные числа.

Таблица 2.1

Десятичное

число

Бинарный код

Код Грея

Десятичное число

0

1

2

3 = 2 + 1

4

5 = 4 +1

6 = 4 + 2

7 = 4 + 2 + 1

8

9 = 8 + 1

10 = 8 + 2

11 = 8 + 2 + 1

12 = 8 + 4

13 = 8 + 4 + 1

14 = 8 + 4 + 2

15 = 8 + 4 + 2 + 1

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

0

1

2 = 3 – 1

3

4 = 7 – 3

5 = 7 – 3 +1

6 = 7 – 1

7

8 = 15 – 7

9 = 15 – 7 + 1

10 = 15 – 7 + 3 – 1

11 = 15 – 7 + 3

12 = 15 – 3

13 = 15 – 3 + 1

14 = 15 – 1

15

Предположим, что нам нужно преобразовать двоичное число с дробной частью 1100,1011 в более привычное десятичное число. В табл. 2.2 показано, как осуществляется такое преобразование.

Таблица 2.2

Двоичное число

Десятичное

число

Целая часть

Дробная часть

1

1

0

0,

1

0

1

1

+

+

+

+

+

+

+

=

Обратное преобразование десятичного числа d в двоичное число (бинарный код) осуществляется в соответствии со следующим алгоритмом. Присваиваем числу d индекс (), и ищем целое число, удовлетворяющее неравенству

, . (2.2)

Если , то задача выполнена – искомое двоичное число содержит единицу в старшем разряде инулей за ней.

Если , то вычисляем разность, и ищем для нее соответствующее число, пользуясь формулой (2.2) с. Операцию вычисления разницыи нахожденияповторяем до тех пор, пока при каком-либоне выполнится условие:.

Очевидно, что (т.е.). При построении искомого бинарного числа используют правило: численные значениясоответствуют разрядам бинарного кода, в котором стоят единицы. Остальные разряды заполняются нулями.

Используем это правило для нахождения бинарного кода десятичного числа 108,5. Согласно формуле (2.2), получаем: .

Искомое двоичное число равно: 1101100,1. Первая единица слева в записи числа соответствует 6 разряду, вторая за ней – пятому разряду. Четвертого разряда нет, поэтому за двумя первыми единицами записываем ноль. Третий и второй разряды есть – после нуля записываем две единицы. Единичного и нулевого разрядов также нет – после двух единиц записываем два нуля. Минус первый разряд есть – поэтому после запятой записываем единицу.

Арифметические операции в двоичной системе осуществляются так же, как и в десятичной («столбиком»). Например, возьмем числа 0111 () и 0101 (), и произведем операции сложения и умножения:

,

В результате получим 1100 () и 100011 (), что и следовало ожидать.

    1. Код Грея

Помимо двоичных чисел на практике применяются и другие коды, использующие два знака: 0 и 1. В этом разделе мы познакомимся с кодом Грея. При сортировке данных естественным представлением является обычное целочисленное описание, поскольку среди десяти цифр каждая на 1 больше предыдущей. При переходе к двоичному описанию эта естественность исчезает. Рассмотрим битовое представление чисел 6, 7, 8 и 9:

0110 0111 1000 1001.

Числа 6 и 7, а также 8 и 9 отличаются друг от друга на один бит. Однако числа 7 и 8 не имеют между собой ничего общего! Это свойство представления может вызвать большие проблемы при решении задач, требующих систематизации числовых данных. Для решения проблемы неоднородности представления используется код Грея.

Код Грея – система нумерации, в которой два соседних значения различаются только в одном разряде.

Код Грея показан в третьем столбце табл. 2.1. Наиболее часто на практике применяется рефлексивный двоичный код Грея, хотя в общем случае существует бесконечное множество кодов Грея для систем счисления с любым основанием. В большинстве случаев, под термином «код Грея» понимают именно рефлексивный бинарный код Грея. Название рефлексный (отражённый) двоичный код происходит от факта, что вторая половина значений в коде Грея эквивалентна первой половине, только в обратном порядке, за исключением старшего бита, который просто инвертируется. Если же разделить каждую половину ещё раз пополам, свойство будет сохраняться для каждой из половин половины и т.д.

Код Грея был разработан Фрэнком Греем, исследователем Bell Labs. Он использовал этот код в своей импульсной системе связи (на него был получен патент № 2632058).

При преобразовании бинарного кода в десятичное число мы умножаем ноль или единицу на , где – номер позиции бита в бинарном коде (; и т.д.), а затем суммируем полученные результаты.

При преобразовании кода Грея в десятичное число мы умножаем ноль или единицу на (), где – номер позиции бита в коде Грея (; и т.д.). Дальше вычитаем из результата, соответствующего старшей единице, результат, соответствующий единице меньшего разряда, прибавляем результат, соответствующий единице еще более меньшего разряда и т.д. (смотри последний столбец табл. 2.1).

    1. Троичная система счисления

Троичная система счисления – позиционная система счисления с целочисленным основанием равным 3. Она существует в двух вариантах: несимметричная и симметричная троичные системы. Несимметричная система обычно использует символы: 0, 1 и 2. Симметричная: –1, 0, +1. В табл. 2.3 показаны десятичные числа и соответствующие им числа в троичной системе счисления.

Таблица 2.3

Десятичная

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

Троичная

несимметричная

-10

-2

-1

0

1

2

10

11

12

20

21

22

100

Троичная

симметричная

11

100

Элементы троичной системы существовали еще у древних шумеров. Полноценную симметричную троичную систему впервые предложил итальянский математик Фибоначчи (Леонардо Пизанский) (1170–1250). Симметричная троичная система позволяет изображать отрицательные числа, не используя отдельный знак минуса.

В момент зарождения компьютерной техники троичная система составляла серьезную конкуренцию двоичной системе. Ее преимущество заключается в том, что она обеспечивает наибольшую плотность записи чисел по сравнению с другими целочисленными системами. Поясним это на следующем примере.

Предположим, что в компьютере мы используем числа в позиционной системе с целочисленным основанием . При этом каждое число имеет максимумразрядов. Значит, для сохранения числа в памяти компьютера требуетсяячеек памяти, причем каждая ячейка должна быть способна находиться всостояниях. Аппаратные затраты составляют:.

Используя систему с основанием иразрядов, мы способны представитьразличных чисел. Эффективность применяемой в компьютере системы счисления можно оценить с помощью следующего числового критерия:

. (2.3)

Чем больше чисел мы можем представить в данной системе счисления, и чем меньше при этом аппаратные затраты, тем эффективнее система по данному критерию.

Чаще критерий эффективности используют в такой форме

. (2.4)

Практически критерий (2.4) равнозначен критерию (2.3), однако удобнее в использовании. Равнозначность основана на факте: если , то. График функциипоказан на рис. 2.1.

Рис.2.1. График функции

Эта функция имеет максимум для . При целых значенияхмаксимум достигается для= 3.

;

;

;

.

Таким образом, наиболее эффективной по критерию (2.4) является троичная система счисления (используемая в троичных компьютерах), следом за которой идут двоичная система счисления (традиционно используемая в большинстве распространённых компьютеров) и четверичная система счисления.

В 1958 году Николай Петрович Брусенцов из МГУ построил первую серийную электронную троичную ЭВМ «Сетунь» на ячейках из ферритдиодных магнитных усилителей переменного тока, работавших в двухбитном троичном коде, четвёртое состояние двух битов не использовалось. В 1970 году Брусенцов построил вторую серийную электронную троичную ЭВМ «Сетунь-70».

В 1973 году в США впервые был создан экспериментальный троичный компьютер, а в 2008 году там же была построена троичная цифровая компьютерная система TCA2 на 1484-х интегральных транзисторах.

Тем не менее, в настоящее время двоичные компьютеры доминируют в компьютерной технике благодаря своей простоте и высокой надежности.

    1. Восьмеричная и шестнадцатеричная системы счисления

Позиционную систему счисления можно построить по любому основанию. Однако наибольшее практическое значение имеют: двоичная, десятичная, восьмеричная и шестнадцатеричная. Причем, последние две используются, в основном, не для вычислений, а для представления двоичного кода в форме, удобной для человека.

В табл. 2.4 представлено 24-битное двоичное слово и соответствующие ему 8-ричный и 16-ричный коды.

Таблица 2.4

Двоичный код

1011001111000101100010112

Восьмеричный код

547426138

Шестнадцатеричный код

B3C58B16

Очевидно, что человеку легче воспринимать двоичный код в форме 8-ричного или 16-ричного кодов. При использовании 8-ричного кода три бита двоичного слова преобразуются в один символ. При использовании 16-ричного слова каждые четыре бита двоичного слова преобразуются в один символ. В табл. 2.5 показано, как осуществляется это преобразование. Как можно видеть, шестнадцатеричные числа обозначаются с помощью 10 арабских цифр и шести букв латинского алфавита.

Таблица 2.5

8-ричное

число

Бинарный код

16-ричное

число

Бинарный код

0

1

2

3

4

5

6

7

000

001

010

011

100

101

110

111

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

studfiles.net

Системы счисления

Системы счисления

Системы счисления – это совокупность приемов представления натуральных чисел с помощью заданного набора цифр или символов. Системы счисления бывают двух видов: непозиционные и позиционные.

Непозиционные системы счисления

В древние времена, когда люди начали считать, появилась необходимость в записи чисел. Первоначально количество предметов отображали соответствующим количеством каких-либо значков (насечек, черточек, точек и т.д.) Изучение археологами таких «записок» показало, что люди группировали «числа» по 3, 5, 7 или 10. такая группировка облегчала счет; Т.к. первым «вычислительным инструментом» были человеческие пальцы, то счет чаще всего вели группами по 5 и по 10.

В дальнейшем, свое название получили десяток десятков (сотня), десяток сотен (тысяча) и пр. Такие узловые величины стали отображать особыми значками – цифрами.

Если при подсчете предметов их оказывалось, например, 2 сотни, 5 десятков и еще 4 предмета, то при записи этого числа повторяли дважды знак сотни, пять раз – знак десятка и четыре – знак единицы.

Непозиционная система счисления – это система счисления, в которой значение цифры не зависит от ее положения в числе.

Такая система вам знакома – это римская система счисления. Так же считали и в Древней Греции, Египте, на Руси.

На Руси буквы азбуки имели числовое значение, если над ней стоял значок «~» – тильда Ã = 1 и т.д.

Самая большая величина – 1050 – колода . Считалось, что «более сего несть человеческому уму разумети».

В Римской системе счисления использовались следующие цифры:

I

V

X

L

С

D

М

1

5

10

50

100

500

1000

Правила записи чисел в римской системе счисления:

Если числа записаны в порядке убывания, то их значения складываются.

Если две цифры стоят в порядке возрастания – их значения вычитаются.

Перед старшей цифрой не может быть записано более одной младшей цифры.

Нельзя писать подряд более трех одинаковых цифр:

Пример:

VI = 5 + 1 = 6

IV = 5 – l = 4

Нельзя писать IIV = 5 – 1 – 1 = 3. Надо: III = 1 + 1 + 1 = 3

Нельзя писать ХХХХ = 10+10+10+10. Надо: XL

Пример:

MCMXCVII=1000+(1000–100)+(100–10)+5+l+l=1000+900+90+7=1997

Непозиционные системы счисления более-менее удобны для сложения-вычитания, но совершенно неудобны для умножения и деления.

Позиционные системы счисления

Впервые идея позиционных систем счисления появилась в Древнем Вавилоне.

Позиционная система счисления – это система счисления, в которой значение цифры зависит от ее положения в числе.

Основание системы счисления – это количество цифр, которое используется для записи чисел.

С позиционной системой счисления вы знакомы с раннего детства – это десятичная система счисления. Эту систему принято называть арабской, но зародилась она в Индии в V веке. В Европе об этой системе узнали в ХП веке из арабских научных трактатов, переведенных на латынь. Этим и объясняется название «арабские числа».

Широкое распространение эта система получила в XVI в. Эта система позволяет легко выполнять любые арифметические действия и записывать числа любой величины, распространение арабской системы счета дало мощный толчок развитию математики.

В десятичной системе счисления запись чисел производится с помощью десяти цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, т.е. десятичная система счисления имеет основание 10.

Рассмотрим пример, из которого видно, что одна и та же цифра имеет разное значение: дано число 333. Оно составлено из цифр – 3. В разных позициях эта цифра имеет значение: 3 сотни = 300, 3 десятка – 30 и 3 едини­цы = 3.

Таким образом, число 333 можно представить в виде суммы: 333 = 300 + 30 + 3 = 300 + 30 +3 = 3·102 + 3·101 + 3·100

Десять – не единственное возможное основание системы счисления. За основание системы счисления можно принять любое натуральное число, большее 1.

Основание системы счисления указывают около числа нижним индексом: 10012 ; 37128; 3B8F16

Развернутая форма записи числа

В позиционной системе счисления любое вещественное число может быть представлено в виде:

А =  (an-1qn-1 + an-2qn-2 + … + a0q0 + a-1 q-1 + a-2q-2 + … a-mq-m),

где q - основание системы счисления,

аi - цифры данной системы счисления,

n - число разрядов целой части числа,

m — число разрядов дробной части числа.

Системы счисления с основанием q = 2n , используемые в ЭВМ

Для упрощения решения задач перевода чисел, из одной системы счисления в другую, удобно пользоваться таблицей соответствия систем счисления.

Десятичная

q = 10

Двоичная

q = 21

Восьмеричная

q = 23

Шестнадцатеричная

q = 24

0

0

0

0

1

1

1

1

2

10

2

2

3

11

3

3

4

100

4

4

5

101

5

5

6

110

6

6

7

111

7

7

8

1000

10

8

9

1001

11

9

10

1010

12

A

11

1011

13

B

12

1100

14

C

13

1101

15

D

14

1110

16

E

15

1111

17

F

4

studfiles.net

Система счисления. Что такое система счисления?

Система счисленияРаньше человеки в пещерах считали добычу, палки-копалки, камни, дубины, кости и прочие штучные вещи на своих десяти пальцах (на руках). Потом времена изменились. В цифровых компьютерах информация любого вида представляется, хранится и обрабатывается в числовой форме. Числа представляются элементарными (простейшими) символами, называемыми цифрами.Множество правил ведения чисел вместе со множеством цифр носит название системы счисления. Количество цифр определяет основание системы счисления.

Дадим несколько примеров систем счисления:

  • десятичная система является системой счисления по основанию 10, количество используемых цифр равно 10, соответственно 0,1,2,…, 9;
  • двоичная система является системой счисления по основанию 2, количество используемых цифр равно 2, а именно 0 и 1. Рассматриваемые цифры называются двоичными цифрами или битами. Слово бит (bit) происходит от английских слов binary digit — двоичная цифра;
  • троичная система является системой счисления по основанию 3, количество используемых цифр равно 3, соответственно 0,1 и 2;
  • восьмеричная система является системой счисления по основанию 8 и со держит 8 цифр: 0,1,2,…, 7;
  • шестнадцатеричная система является системой счисления по основанию 16 и содержит 16 цифр: 0,1,2,…, 9, А (десять), В (одиннадцать), С (двенадцать), D (тринадцать), Е (четырнадцать), F (пятнадцать).

основания систем счисления

 

Правило представления чисел в десятичной системе представлено в следующем примере: (3835)10 = 3000+800 + 30+ 5 = 3103 + 8-102 + 3101+ 5*100 .

Вот, например, как представляется число  234

десятичная система

Заметам, что в этом представлении значение (вклад) каждой цифры зависит от ее позиции в записи данного числа. Например, цифра 3 встречается 2 раза: пер вый раз — со значением «три тысячи», а второй раз — со значением «тридцать».Формально десятичная система счисления не предоставляет никаких особых преимуществ по сравнению с другими системами счисления. Предполагается, что эта система вошла в употребление еще в те времена, когда в качестве счет ных инструментов использовались пальцы рук.

Формально десятичная система счисления не предоставляет никаких особых преимуществ по сравнению с другими системами счисления. Предполагается, что эта система вошла в употребление еще в те времена, когда в качестве счетных инструментов использовались пальцы рук.

Б принципе, автоматические вычислительные машины можно построить для любой системы счисления. Однако, с развитием вычислительной техники было установлено, что наибольшие преимущества дает использование двоичной системы счисления. Эта система была выбрана по следующим причинам:

  • для упрощения правил выполнения арифметических и логических операций;
  • физическое представление цифр при обработке или хранении чисел осуществляется намного легче для двух цифр, чем для десяти символов: перфорирован/неперфорирован, намагничен/ненамагничен, контакт замкнут/разомкнут, наличие или отсутствие тока и т.п.;
  • устройства, которые различают только два состояния, намного надежнее тех, что различают десять состояний.

Очевидно, что применение двоичной системы счисления диктует необходимость преобразования информации любого вида — текста, звука, изображений и т.д. в последовательности двоичных цифр.

В настоящее время практически все компьютеры работают в двоичной системе счисления

Операция, обратная кодированию, называется декодированием.Кодирование осуществляется в устройствах, предназначенных для ввода информации в компьютер, а декодирование — в устройствах для вывода ин формации, представляя ее в форме, доступной человеку.

Отметим, что в процессе развития человеческой цивилизации были также созданы непозиционные системы счисления. Примером может служить римская система счисления, использующая цифры. Так, число 16 представляется в римской системе как XVI, а число 14 как XIV. Поскольку правила представления чисел и арифметических операций над ними в непозиционных системах очень сложны, такие системы имеют ограниченное применение.

chisla-3

Похожие статьи:

 

Запись имеет метки: Полезное

moydrugpc.ru

Системы счисления | Информатика

Совокупность приемов записи и наименования чисел называется системой счисления.

Числа записываются с помощью символов, и по количеству символов, используемых для записи числа, системы счисления подразделяются на позиционные и непозиционные. Если для записи числа используется бесконечное множество символов, то система счисления называется непозиционной. Примером непозиционной системы счисления может служить римская. Например, для записи числа один используется буква I, два и три выглядят как совокупности символов II, III, но для записи числа пять выбирается новый символ V, шесть — VI, десять — вводится символ X, сто — С, тысяча — Ми т.д. Бесконечный ряд чисел потребует бесконечного числа символов для записи чисел. Кроме того, такой способ записи чисел приводит к очень сложным правилам арифметики.

Позиционные системы счисления для записи чисел используют ограниченный набор символов, называемых цифрами, и величина числа зависит не только от набора цифр, но и от того, в какой последовательности записаны цифры, т.е. от позиции, занимаемой цифрой, например, 125 и 215. Количество цифр, используемых для записи числа, называется основанием системы счисления, в дальнейшем его обозначим q.

В повседневной жизни мы пользуемся десятичной позиционной системой счисления, q = 10, т.е. используется 10 цифр: 0 1 2 3 4 5 6 7 8 9.

Рассмотрим правила записи чисел в позиционной десятичной системе счисления. Числа от 0 до 9 записываются цифрами, для записи следующего числа цифры не существует, поэтому вместо 9 пишут 0, но левее нуля образуется еще один разряд, называемый старшим, где записывается (прибавляется) 1, в результате получается 10. Затем пойдут числа 11, 12, но на 19 опять младший разряд заполнится и мы его снова заменим на 0, а старший разряд увеличим на 1, получим 20. Далее по аналогии 30, 40 ... 90, 91, 92 ... до 99. Здесь заполненными оказываются два разряда сразу; чтобы получить следующее число, мы заменяем оба на 0, а в старшем разряде, теперьуже третьем, поставим 1 (т.е. получим число 100) и т.д. Очевидно, что, используя конечное число цифр, можно записать любое сколь угодно большое число. Заметим также, что производство арифметических действий в десятичной системе счисления весьма просто.

В информатике, вследствие применения электронных средств вычислительной техники, большое значение имеет двоичная система счисления, q = 2. На ранних этапах развития вычислительной техники арифметические операции с действительными числами производились в двоичной системе ввиду простоты их реализации в электронных схемах вычислительных машин. Например, таблицасложения и таблица умножения будут иметь по четыре правила:

0 + 0 = 0

0x0 = 0

0+1 = 1

0x1=0

1+0=1

1x0 = 0

1 + 1 = 10

1x1 = 1

А значит, для реализации поразрядной арифметики в компьютере потребуются вместо двух таблиц по сто правил в десятичной системе счисления две таблицы по четыре правила в двоичной. Соответственно на аппаратном уровне вместо двухсот электронных схем —восемь.

Но запись числа в двоичной системе счисления длиннее записи того же числа в десятичной системе счисления в log2 10 раз (примерно в 3,3 раза). Это громоздко и не удобно для использования, так как обычно человек может одновременно воспринять не более пяти-семи единиц информации, т.е. удобно будет пользоваться такими системами счисления, в которых наиболее часто используемые числа (от единиц до тысяч) записывались бы одной-четырьмя цифрами.Как это будет показано далее, перевод числа, записанного в двоичной системе счисления, в восьмеричную и шестнадцатеричную очень сильно упрощается по сравнению с переводом из десятичной в двоичную. Запись же чисел в них в три раза короче для восьмеричной и в четыре для шестнадцатеричной системы, чем в двоичной, но длины чисел в десятичной, восьмеричной и шестнадцатеричной системах счисления будут различаться ненамного. Поэтому, наряду с двоичной системой счисления, в информатике имеют хождение восьмеричная и шестнадцатеричная системы счисления.

Восьмеричная система счисления имеет восемь цифр: 0 12 3 4 5 6 7. Шестнадцатеричная — шестнадцать, причем первые 10 цифр совпадают по написанию с цифрами десятичной системы счисления, а для обозначения оставшихся шести цифр применяются большие латинские буквы, т.е. для шестнадцатеричной системы счисления получим набор цифр: 0123456789ABCDEF.

Если из контекста не ясно, к какой системе счисления относится запись, то основание системы записывается после числа в виде нижнего индекса. Например, одно и то же число 231, записанное вдесятичной системе, запишется в двоичной, восьмеричной и шестнадцатеричной системах счисления следующим образом:

23100)= 111001 ll(2)= 347(g)=E7(16).

Запишем начало натурального ряда в десятичной, двоичной, восьмеричной и шестнадцатеричной системах счисления.

Десятичная

Двоичная

Восьмерич-

Шестнадцате-

ная

ричная

0

0

0

0

1

1

1

1

2

10

2

2

3

11

3

3

4

100

4

4

5

101

5

5

 

Десятичная

Двоичная

Восьме-ричная

Шестнадца-теричная

6

110

6

6

7

111

7

7

8

1000

10

8

9

1001

11

9

10

1010

12

А

11

1011

13

В

12

1100

14

С

13

1101

15

D

14

1110

16

Е

15

1111

17

F

16

10000

20

10

17

10001

21

11

ibrain.kz