Как определить, лежат ли точки на одной прямой. Лежит точка на прямой


Точка на прямой

Комплексный чертеж точки, находящейся на прямой. Точку на прямой можно рассматривать как одну из точек, принадлежащих этой прямой. Пусть дан отрезок АВ и его проекции А1В1 и А2В2. На отрезке АВ лежит точка С, требуется определить ее проекции. Так как точка принадлежит отрезку, то ее проекции будут лежать на одноименных проекциях отрезка (фиг.211,а).

чертеж точки находящейся на прямой

Проведем через точку С проектирующие прямые, получим горизонтальную проекцию С1 точки С на горизонтальной проекции А1В1отрезка АВ и фронтальную проекцию С2 на фронтальной проекции А2В2 (фиг.211,б). Рассматривая комплексный чертеж точки С, замечаем, что обе проекции С1 и С2 лежат на одной вертикальной линии связи, как проекции одной и той же точки. Если одна (фиг.211,в) или две проекции (фиг.211,г) точки не лежат на одноименных проекциях отрезка, то точка не лежит на отрезке. Следовательно, для того чтобы точка лежала на прямой, необходимо, чтобы проекции этой точки не только лежали на одноименных проекциях прямой, но и находились на одной линии связи. Это правило имеет исключение в том случае, когда точка лежит на горизонтальной прямой, данной фронтальной и профильной проекциями, на фронтальной прямой, данной горизонтальной и профильной проекциями, или профильной прямой, данной горизонтальной и фронтальной проекциями.

точка лежащая на прямой

Тогда, для того чтобы определить, лежит ли точка на прямой, необходимо построить третью проекцию. На (фиг.212) видно, что точка Е не лежит на отрезке АВ, так как профильная проекция Е3 точки Е не лежит на профильной проекции А3В3 отрезка АВ; точка F лежит на отрезке АВ, так как не только ее горизонтальная F1 фронтальная F2, но и профильная F3 проекции лежат на одноименных проекциях отрезка АВ.

Параллельные прямые.....



 

www.viktoriastar.ru

Как определить, лежат ли точки на одной прямой

Если вам даны две точки , то вы можете отважно заявить, что они лежат на одной прямой , потому что через всякие две точки дозволено провести прямую. Но как же узнать, лежат ли все точки на прямой , если точек три, четыре либо огромнее? Подтвердить принадлежность точек одной прямой дозволено несколькими методами.

Вам понадобится

  • Точки, заданные координатами.

Инструкция

1. Если вам даны точки с координатами (х1, у1, z1), (х2, у2, z2), (х3, у3, z3), обнаружьте уравнение прямой , применяя координаты всяких 2-х точек, скажем, первой и 2-й. Для этого подставьте соответствующие значения в уравнение прямой : (х-х1)/(х2-х1)=(у-у1)/(у2-у1)=(z-z1)/(z2-z1). Если один из знаменателей равен нулю, примитивно приравняйте к нулю числитель.

2. Обнаружить уравнение прямой , зная две точки с координатами (х1, у1), (х2, у2), еще проще. Для этого подставьте значения в формулу (х-х1)/(х2-х1)=(у-у1)/(у2-у1).

3. Получив уравнение прямой , проходящей через две точки , подставьте значения координат третьей точки в него взамен переменных х и у. Если равенство получилось правильное, значит все три точки лежат на одной прямой . Верно так же можете проверять принадлежность этой прямой других точек.

4. Проверьте принадлежность всех точек прямой , проверив равенство тангенсов углов наклона соединяющих их отрезков. Для этого проверьте, будет ли правильным равенство (х2-х1)/(х3-х1)=(у2-у1)/(у3-у1)=(z2-z1)/(z3-z1). Если один из знаменателей равен нулю, то для принадлежности всех точек одной прямой должно выполняться условие х2-х1=х3-х1, у2-у1=у3-у1, z2-z1=z3-z1.

5. Еще один метод проверить принадлежность 3 точек прямой – посчитайте площадь треугольника, тот, что они образуют. Если все точки лежат на прямой , то его площадь будет равна нулю. Подставьте значения координат в формулу: S=1/2((х1-х3)(у2-у3)-(х2-х3)(у1-у3)). Если позже всех вычислений вы получили нуль — значит, три точки лежат на одной прямой .

6. Дабы обнаружить решение задачи графическим методом, постройте координатные плоскости и обнаружьте точки по указанным координатам. После этого проведите прямую через две из них и продолжите до третьей точки , посмотрите, пройдет ли она через нее. Учтите, данный метод подходит только для точек, заданных на плоскости с координатами (х, у), если же точка задана в пространстве и имеет координаты (х, у, z), то такой метод неприменим.

На основании аксиомы, описывающей свойства прямой : какова бы ни была прямая, есть точки , принадлежащие и не принадлежащие ей. Следственно абсолютно разумно, что не все точки будут лежать на одной прямой линии.

Вам понадобится

  • — карандаш;
  • — линейка;
  • — ручка;
  • — тетрадь;
  • — калькулятор.

Инструкция

1. Проверить принадлежность точки той либо другой прямой достаточно легко. Используйте для этого уравнение прямой . Выходит, представим, что прямая проходит через точки А(x1,y1) и В(x2,y2). Дана точка К(x,y): необходимо проверить ее принадлежность прямой . Уравнение линии по двум точкам имеет дальнейший вид: (x — x1) * (y2 — y1) — (x2 — x1) * (y — y1) = 0.

2. Подставьте значение координат точки К в уравнение. Если (x — x1) * (y2 — y1) — (x2 — x1) * (y — y1) окажется огромнее нуля, то точка К расположена правее либо ниже прямой , проведенной по точкам А и В.

3. В том случае, если (x — x1) * (y2 — y1) — (x2 — x1) * (y — y1) будет поменьше нуля, точка К располагается выше либо левее линии. Другими словами, только в том случае, если уравнение вида (x — x1) * (y2 — y1) — (x2 — x1) * (y — y1) = 0 объективно, точки А, В и К будут расположены на одной прямой .

4. В остальных случаях лишь две точки (А и В), которые, по условию задания, лежат на прямой , будут ей принадлежать: через третью точку (точку К) прямая проходить не будет.

5. Разглядите 2-й вариант определения принадлежности точки примой: на данный раз надобно проверить принадлежит ли точка С(x,y) отрезку с концевыми точками В(x1,y1) и А(x2,y2), тот, что является частью прямой z.

6. Точки рассматриваемого отрезка опишите уравнением pOB+(1-p)OА=z, при условии, что 0?p?1. ОВ и ОА являются векторами. Если есть такое число p, которое огромнее либо равно 0, но поменьше либо равно 1, то pOB+(1-p)OА=С, а значит, точка С будет лежать на отрезке АВ. В отвратном случае, данная точка не будет принадлежать этому отрезку.

7. Распишите равенство pOB+(1-p)OА=С покоординатно: px1+(1-p)x2=x и py1+(1-p)y2=y.

8. Обнаружьте из первого уравнения число р и подставьте его значение во второе равенство. Если равенство будет соответствовать условиям 0?p?1, то точка С принадлежит отрезку АВ.

9. Постройте точки по заданным координатам и проведите через них прямую. Это дозволит увидеть точки , лежащие на одной прямой , и те точки , что не принадлежат ей.

Обратите внимание! Удостоверитесь в правильности расчетов!

Полезный совет Дабы обнаружить k — угловой показатель прямой, надобно (y2 — y1)/(x2 — x1).

Построение прямых — основа технического черчения. Теперь это все почаще делается с поддержкой графических редакторов, которые предоставляют проектировщику крупные вероятности. Впрочем некоторые тезисы построения остаются теми же, что и в классическом черчении — с подмогой карандаша и линейки.

Вам понадобится

  • — лист бумаги;
  • — карандаш;
  • — линейка;
  • — компьютер с программой AutoCAD.

Инструкция

1. Начните с классического построения. Определите плоскость, в которой вы будете строить прямую. Пускай это будет плоскость листа бумаги. В зависимости от условий задачи расположите точки. Они могут быть произвольными, но не исключено, что задана какая-то система координат. Произвольные точки поставьте там, где вам огромнее понравится. Обозначьте их как А и В. С поддержкой линейки объедините их. Согласно аксиоме, через две точки неизменно дозволено провести прямую, притом только одну.

2. Начертите систему координат. Пускай вам даны координаты точки А (х1; у1). Дабы их обнаружить, нужно отложить по оси х надобное число и провести через подмеченную точку прямую, параллельную оси у. После этого отложите величину, равную у1, по соответствующей оси. Из подмеченной точки проведите перпендикуляр до его пересечения с первым. Место их пересечения и будет точкой А. Таким же образом обнаружьте точку В, координаты которой дозволено обозначить как (х2; у2). Объедините обе точки прямой.

Определите расположение точек в заданной системе координат

3. В программе AutoCAD прямую дозволено возвести несколькими методами. Функция «по двум точкам» обыкновенно установлена по умолчании. Обнаружьте в верхнем меню вкладку «Основная». Вы увидите перед собой панель «Рисование». Обнаружьте кнопку с изображением прямой линии и нажмите на нее.

4. Прямую по двум точкам в этой программе дозволено возвести двумя методами. Поставьте курсор в надобную точку на экране и щелкните левой кнопкой мыши. После этого определите вторую точку, протяните туда линию и тоже щелкните мышкой.

5. AutoCAD разрешает также задать координаты обеих точек. Наберите в находящейся внизу командной строке (_xline). Нажмите Enter. Введите координаты первой точки и тоже нажмите на ввод. Верно также определите и вторую точку. Ее дозволено указать и щелчком мыши, поставив курсор в необходимую точку экрана.

6. В AutoCAD дозволено возвести прямую не только по двум точкам, но и по углу наклона. В контекстном меню «Рисование» выберите прямую, а после этого опцию «Угол». Начальную точку дозволено поставить щелчком мыши либо по координатам, как и в предыдущем методе. После этого задайте размер угла и нажмите на ввод. По умолчании прямая расположится под необходимым углом к горизонтали.

Видео по теме

Подтвердить, что точка не лежит в плоскости треугольника, дозволено легкой проверкой всех допустимых обстановок, тем больше что их не много. Не следует только забывать, что дозволено придти и к событию противоположному, то есть случаю, когда точка является внутренней для заданного треугольника.

Инструкция

1. Раньше чем искать решение поставленной задачи, читателю следует самому принять решение о принадлежности сторон треугольника. Считать их точки внешними для треугольника либо нет. На данной стадии считаем, что это область замкнутая, а следственно она включает свои границы. Для простоты разглядите «плоский случай», но не забывайте и о пространственном обобщении. Следственно типовые уравнения для прямых плоскости вида y=kx+b, применять не следует, по весьма мере в начале решения.

2. Выберите метод задания для сторон треугольника. Судя по постановке задачи, это не имеет твердого значения. Следственно считайте, что даны координаты его вершин A(xa, ya), B(xb, yb), C(xc, yc) (см. рис. 1.). Обнаружьте направляющие векторы сторон треугольника AB={xb-xa, yb-ya}, BC={xc-xb, yc-yb}, AC={xc-xa, yc-ya} и запишите канонические уравнения прямых, содержащих эти стороны. Для AB – (x-xa)/(xb-xa)=(y-ya)/(yb-ya). Для BС – (x-xb)/(xc-xb)=(y-yb)/(yc-ya). Для AС – (x-xa)/(xc-xa)=(y-ya)/(yc-ya). В соответствии с рисунком проведите горизонтальные и вертикальные линии, которые дозволено записать как x=xc, x= xa, x=xb, y=yc, y=ya, y=yb. Это дозволит до минимума сократить число вычислений. Дальше следуйте предложенному алгорифму. На рисунке заданная точка М(xo,yo) помещена в самом «неблагополучном» месте.

Как подтвердить, что точка не лежит в плоскости треугольника

3. Следуя по оси 0х, проверьте выполнение неравенства xc?xo?хb. Если оно не исполнено, то точка теснее лежит вне пределов треугольника, потому что «не внутри» — это и есть «снаружи». Если же неравенство исполнено, то дальше проверьте честность xc

4. Проверьте выполнение неравенства уc?уo?уа. Если оно не объективно, то точка не лежит внутри треугольника. В отвратном случае обнаружьте ординату прямой, содержащей АB. у1=y(xo)=[(yb-ya)(xo-xa)]/(xb-xa)+ya. Также поступите с ординатой прямой для BC. у2=у(хо)=[(yс-yb)(xo-xb)]/(xc-xb)+yc. Составьте неравенство y2?yo?y1. Его выполнение разрешает сделать завершение о том, что заданная точка находится внутри треугольника. Если же это неравенство ложно, то она лежит вне его пределов, в частности в соответствии с рисунком.

jprosto.ru

Точка на прямой

Если точка лежит на прямой, то проекции этой точки лежат на одноименных проекциях прямой. Точка С лежит на прямой АВ, а точка D – не лежит на этой прямой (рис.21).

рис.21

Деление отрезка в заданном отношении

Деление отрезка на равные или пропорциональные части выполняют по теореме Фалеса: Если на одной прямой отложить равные или пропорциональные отрезки и через их концы провести параллельные прямые, то эти прямые отсекут на другой прямой равные или пропорциональные отрезки. Разделим отрезок АВ в соотношении 3:1 (рис.22).

рис.22

Определение истинной величины отрезка прямой методом прямоугольного треугольника

В пространстве отрезок АВ прямой общего положения спроецирован на две плоскости π1 и π2и представляет собой гипотенузу двух прямоугольных ∆ АВС и ABD (рис.23). В ∆ АВС катет АС параллелен и равен А'В', катет СВ составляет разность координат z точек А и В. Катетами второго – отрезок BD=A"B" и разность координат у точек А и В. На эпюре легко построить такие треугольники.

рис.23

Длина отрезка АВ определяется гипотенузой прямоугольного треугольника, одним из катетов которого является одна из проекций отрезка АВ, а вторым - разность координат концов отрезка. Угол между гипотенузой и горизонтальной проекцией является углом наклона отрезка АВ к плоскости π1 - α. β - угол наклона отрезка АВ к плоскости π2 является углом между гипотенузой и фронтальной проекцией отрезка АВ.

Чтобы на эпюре получить истинную величину отрезка АВ и углы его наклона α и β к плоскостям π1 и π2, нужно построить два прямоугольных треугольника (рис.24). Катетами одного треугольника является горизонтальная проекция А'В' и разность ∆ z точек А и В. Гипотенузы А0В' и А0В'' равны длине отрезка АВ, а углы, заключенные между ними и проекциями А'B' и А''В", равны искомым углам α и β.

рис.24

Проекция прямого угла

Если одна сторона прямого угла параллельна плоскости проекций, то на эту плоскость проекций прямой угол проецируется без искажения (рис.25).

Рис.25

Задача 1. Определить расстояние от точки А до прямой l (рис.26).

Решение сводится к построению перпендикуляра А'В' на l' и определению его истинной величины методом прямоугольного треугольника.

Задача 2. Построить равнобедренный треугольник с вершиной в точке А и одним из катетов на прямой l' (рис.27).

Рис. 26 Рис.27

Прямая l является фронталью. Строим прямой угол. Из А" на l" опускаем ┴АВ. Строим в проекционной связи горизонтальную проекцию отрезка А'B'.

Катет АВ (А'В', А"В") - отрезок общего положения. Истинную величину АВ находим методом прямоугольного треугольника и откладываем ее на фронтальной проекции фронтальной прямой l для получения вершины С.

Задача 3. Построить ромб ABCD по заданным вершине А и направлению диагонали BD на h и отношению диагоналей AC:BD=1:1,5 (рис.28).

Решение задачи сводится к построению диагоналей АС и BD.

A' C' ┴h'

О - точка пересечения диагоналей.

Рис.28

Находим истинную величину отрезка ОА методом прямоугольного треугольника и, увеличив ее в 1,5 раза, откладываем на h' для получения проекций В' и D'. В" и D'' находим на h". Полученные проекции точек соединяем для получения проекций ромба.

studfiles.net

Точка на прямой. Деление отрезка на части. — КиберПедия

Если точка лежит на прямой, то проекции этой точки лежат на одноименных проекциях прямой (рис. 10).

Рис. 10

Если точка делит проекцию прямой в данном отношении, то проекции этой точки делят проекцию прямой в этом же отношении. На рис.10 показано деление отрезка в отношении АС:СВ=3:1.На вспомогательной прямой отложили 4 отрезка равной длины. Последнюю точку соединили с В1 и параллельно этой прямой провели прямую, отсчитав одну часть. Точка С делит отрезок в отношении 3:1.

Взаимное положение прямых

Пересекающиеся прямые

Пересекающиеся прямые имеют общую точку. Проекции этой точки должны принадлежать одноименным проекциям обеих прямых. Из этого следует, что точки пересечения одноименных проекций пересекающихся прямых лежат на одной линии связи. На рис. 11 изображены пересекающиеся в точке D прямые m и n.

Рис. 11

Параллельные прямые

У параллельных прямых параллельны одноименные проекции. На рис. 12 изображены параллельные прямые m и n.

Рис. 12

Скрещивающиеся прямые.

Скрещивающиеся прямые не имеют общей точки. Следовательно, точка пересечения одноименных проекций таких прямых (например, m и n, рис. 13) не лежит на одной линии связи, так как каждая из них является изображением двух разных точек (точки 1, 2 и 3, 4).

Рис.13

1.6. Способы задания плоскости. Плоскость общего положения.

Способы задания плоскости представлены в таблице 4.

Таблица 4

Плоскости бывают общего и частного положения (рис.14)

Рис.14

 

Если плоскость не перпендикулярна ни одной из плоскостей проекций, то она называется плоскостью общего положения. Примеры чертежа плоскости общего положения показаны в таблице 4.

 

Плоскости частного положения.

Плоскостями частного положения называются плоскости параллельные или перпендикулярные плоскостям проекций.

 

Проецирующие плоскости

Если плоскость перпендикулярна только одной плоскости проекций, то она называется проецирующей(табл. 5).

 

Таблица 5

Плоскости уровня

Если плоскость перпендикулярна одновременно двум плоскостям проекций, а, следовательно, параллельна третьей, то она называется плоскостью уровня(таблица 6).

 

Таблица 6

 

│АВС│- натуральная (истинная) величина ΔАВС.

Прямая и точка в плоскости

Прямая принадлежит плоскости, если она имеет с ней две общие точки.Точка принадлежит плоскости, если она принадлежит какой-нибудь прямой, лежащей в этой плоскости (рис. 15).Точка М принадлежит плоскости α(a∩b),так как находится на прямой k, принадлежащей этой плоскости.

 

Рис. 15

Прямая принадлежит плоскости, если проходит через одну точку плоскости и параллельна какой-нибудь прямой, лежащей в этой плоскости (рис. 16). Прямая k параллельна прямой АВ.

Точка М принадлежит плоскости ΔАВС, так как находится на прямой k, принадлежащей заданной плоскости.

Рис.16

cyberpedia.su

Когда 3 точки лежат на одной прямой

Очень часто при решения домашней работы возникает вопрос: когда 3 точки лежат на одной прямой, ответ очень прост и он лежит в основе геометрии.

Осуществить проверку того, что три точки лежат на одной прямой можно через составления уравнения, рассматриваемой прямой, которая проходит через две наугад выбранные точки из этих трех. И проверки того, что этому уравнению удовлетворяют координаты оставшейся из этих трех точек.

Есть разные виды уравнения прямой. Воспользуемся одним из простейших способов и рассмотрим его для конкретно заданных точек.

Это сделаем лишь для того, чтобы не решать поставленную задачу в общем виде, а чтобы дать ответ на вопрос лежат ли 3 именно эти точки с этими координатами на одной прямой. Сформулируем задачу: Необходимо проверить лежат ли точки A(-2;1), Б(0;3), В (5;-7) на одной прямой.

Решим поставленную задачу

Как известно, через любые две точки можно провести прямую, причем единственную. Вот и проведем мысленно эту прямую. Допустим, прямую АБ. Значит, решение нашей задачи свелось к тому, что нужно проверить: принадлежит ли точка В прямой АБ. Если окажется, что точка В принадлежит прямой АБ, то все точки из условия будут лежать на одной прямой. Если мы выясним, что точка В не принадлежит прямой АБ, то можно будет утверждать, что точки А, Б и В на одной прямой не лежат. Составим уравнение прямой АБ как уравнение прямой проходящей через две точки:

(х+2)/(0+2)=(y-1)/(3-1)

После преобразования получим:

(x+2)/2=(y-1)/2

x+2=y-1

x-y=-3 - это уравнение прямой АБ

Проверим удовлетворяют ли  координаты точки В этому уравнению, для этого достаточно выполнить подстановку координат точки В в место переменных в уравнении прямой АБ. Если получим верное числовое равенство, то точка В - это точка прямой АБ. В противном случае, неверное числовое равенство, будет свидетельствовать о не принадлежности точки В прямой АБ.

5-(-7)=-3

12=-3

Как видим, не получили верное числовое равенство. Значит в этом случае точки А, Б, В не лежат на одной прямой.

Пример, когда 3 точки лежат на одной прямой можно легко подобрать для этой задачи. Всего лишь точка В должна иметь координаты (0;3) или (-7;-4)

 

 

belmathematics.by

Записать каноническое уравнение прямой, проходящей через точки А (2;-5) и В (4;7). Лежит ли точка С (0;17) на прямой АВ? Ответ обосновать.

 

Уравнение прямой, проходящей через 2 заданные точки – А и В:

Проверка точка С:

Точка С не лежит на прямой АВ.

4. Вычислить интеграл .

 

БИЛЕТ № 2.

Вычисление определителей второго, третьего и n-го порядка.

Определитель второго порядка:

Определитель третьего порядка:

Определитель n-го порядка:

где M1j — определитель квадратной матрицы, полученной из матрицы A вычеркиванием

первой строки и j-го столбца.

 

Вектор-функция. Интегрирование. Натуральный параметр.

 

Пусть каждому значению поставлен в соответствие вектор трехмерного пространства. В этом случае говорят, что на множестве D задана векторная функция.

Если в пространстве задана декартова система координат, то задание вектор-функции означает задание скалярных функций x (t), y (t), z (t). Если – единичные векторы координатных осей, то .

Для вектор-функции , заданной на отрезке можно составить интегральные суммы и рассмотреть их предел при стремлении к нулю максимальной длины отрезков, на которые разбит отрезок [a;b]. Этот предел будет называться интегралом от по отрезку [a;b] и обозначаться . Этот предел существует только если непрерывна на отрезке [a;b]. На интегралы от вектор-функций распространяются обычные свойства интегралов от скалярных функций.

Вектор-функции широко используются в физике. Так, скорость , ускорение , сила напряженности электрического и магнитного полей и плотность тока являются векторными функциями координат.

 

Найти косинус угла при вершине С в треугольнике АВС, если известны координаты вершин треугольника: А (-1;0;4), В (0;-1;3) и С (1;0;4).

 

Угол АСВ – это угол между векторами и .

(-1-1;0-0;4-4) = (-2;0;0)

(0-1;-1-0;3-4) = (-1;-1;-1)

 

4. Вычислить интеграл .

 

 

БИЛЕТ № 3.

Обратная матрица. Формула для нахождения обратной матрицы.

Если существуют квадратные матрицы Х и А одного порядка, удовлетворяющие условию:

XA = AX = E,

где Е - единичная матрица того же самого порядка, что и матрица А, то матрица Х называется обратнойк матрице А и обозначается А-1.

Каждая квадратная матрица с определителем, не равным нулю имеет обратную матрицу и притом только одну.

Общий подход к нахождению обратной матрицы.

Исходя из определения произведения матриц, можно записать:

AX = E Þ , i=(1,n), j=(1,n),

eij = 0, i ¹ j,

eij = 1, i = j .

Таким образом, получаем систему уравнений:

,

Решив эту систему, находим элементы матрицы Х.

Но такой способ не удобен при нахождении обратных матриц больших порядков, поэтому обычно применяют следующую формулу:

где Мji – дополнительный минор элемента аji матрицы А.

 

Свойства неопределённого интеграла.

Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением: F(x) + C.

Записывают:

Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.

Свойства:

1.

2.

3.

4. где u, v, w – некоторые функции от х.

5.

 

cyberpedia.su

Как определить, лежат ли точки на одной прямой

Если вам даны две точки, то вы можете смело заявить, что они лежат на одной прямой, так как через любые две точки можно провести прямую. Но как же выяснить, лежат ли все точки на прямой, если точек три, четыре или больше? Доказать принадлежность точек одной прямой можно несколькими способами.

Вам понадобится

  • Точки, заданные координатами.

Инструкция

  • Если вам даны точки с координатами (х1, у1, z1), (х2, у2, z2), (х3, у3, z3), найдите уравнение прямой, используя координаты любых двух точек, например, первой и второй. Для этого подставьте соответствующие значения в уравнение прямой: (х-х1)/(х2-х1)=(у-у1)/(у2-у1)=(z-z1)/(z2-z1). Если один из знаменателей равен нулю, просто приравняйте к нулю числитель.
  • Найти уравнение прямой, зная две точки с координатами (х1, у1), (х2, у2), еще проще. Для этого подставьте значения в формулу (х-х1)/(х2-х1)=(у-у1)/(у2-у1).
  • Получив уравнение прямой, проходящей через две точки, подставьте значения координат третьей точки в него вместо переменных х и у. Если равенство получилось верное, значит все три точки лежат на одной прямой. Точно так же можете проверять принадлежность этой прямой других точек.
  • Проверьте принадлежность всех точек прямой, проверив равенство тангенсов углов наклона соединяющих их отрезков. Для этого проверьте, будет ли верным равенство (х2-х1)/(х3-х1)=(у2-у1)/(у3-у1)=(z2-z1)/(z3-z1). Если один из знаменателей равен нулю, то для принадлежности всех точек одной прямой должно выполняться условие х2-х1=х3-х1, у2-у1=у3-у1, z2-z1=z3-z1.
  • Еще один способ проверить принадлежность трех точек прямой – посчитайте площадь треугольника, который они образуют. Если все точки лежат на прямой, то его площадь будет равна нулю. Подставьте значения координат в формулу: S=1/2((х1-х3)(у2-у3)-(х2-х3)(у1-у3)). Если после всех вычислений вы получили ноль - значит, три точки лежат на одной прямой.
  • Чтобы найти решение задачи графическим способом, постройте координатные плоскости и найдите точки по указанным координатам. Затем проведите прямую через две из них и продолжите до третьей точки, посмотрите, пройдет ли она через нее. Учтите, этот способ подходит только для точек, заданных на плоскости с координатами (х, у), если же точка задана в пространстве и имеет координаты (х, у, z), то такой способ неприменим.

completerepair.ru