Модуль отрицательного числа. Как вывести из модуля число


Простейшие уравнения с модулем. Тест

Определение. Геометрический смысл

 

Модуль (или абсолютная величина)   числа x  (обозначается как |x|)— неотрицательное число, определение которого зависит от типа числа  x.

А именно:

Мы будем называть данное правило правилом раскрытия модуля.

Например, |5|=5, так как 5\geq0, попадаем в первую строку (ситуацию)

|-4|=-(-4)=4, так как -4<0, попадаем во вторую ситуацию.

С геометрической точки зрения, |a|  – есть расстояние между числом  a и началом координат.

Решением уравнения, например, |x|=6  являются числа 6 и -6, потому что расстояние от точки 6 координатной прямой до нуля равно 6, и расстояние от точки  -6 до нуля также равно 6.

|a-b | с геометрической точки зрения означает расстояние между точками a и b.

 

Полезные примеры

 

1) Раскрыть модуль: |\pi-3|

Так как \pi=3,1415926... больше, чем 3, то \pi-3>0, а значит |\pi-3|=\pi-3 согласно правилу раскрытия модуля.

2) Раскрыть модуль: |x^4+1|

Так как x^4+1 больше нуля при всех значениях x, то |x^4+1|=x^4+1 согласно правилу раскрытия модуля.

3) Раскрыть модуль: |2-\sqrt5|

Так как \sqrt5>\sqrt4=2, то 2-\sqrt5<0, а значит, |2-\sqrt5|=\sqrt5-2 согласно правилу раскрытия модуля.

Решение уравнений

 

1) Решить уравнение |x^2-4x+3|=-2.

Модуль – всегда неотрицательная величина, поэтому уравнение решений не имеет.

Ответ: { \varnothing }

2) Решить уравнение: |x|=x.

Модуль раскрывается таким образом в случае, когда  x\geq 0.

Ответ: [0;+\infty).

3) Решить уравнение: |x-2|=|2-x|.

Согласно геометрическому смыслу модуля |a-b| левая и правая части равенства представляют из себя одно и то же.

Ответ: (-\infty;+\infty).

4)  Решить уравнение: x|x|+8x-7=0.

Раскрываем модуль согласно правилу раскрытия модуля:

а) x\geq 0

Имеем: x\cdot x+8x-7=0,     x^2+8x-7=0

Откуда x=-4\pm \sqrt{23}.

Поскольку мы находимся в ситуации x\geq 0, то подходит только корень x=-4+\sqrt{23}.

б) x<0

Имеем: x\cdot(-x)+8x-7=0,    -x^2+8x-7=0

Откуда x=7 или x=1.

Поскольку мы находимся в ситуации x<0, то ни один корень из найденных в пункте (б) нам не подходит.

Ответ: -4+\sqrt{23}.

Коротко можно было бы решение оформить так:

5) Решить уравнение: x^2-2|x-1|=2.

Раскрываем модуль согласно правилу раскрытия модуля:

a) Первый случай:

\begin{cases} x-1\geq 0,& &x^2-2(x-1)=2; \end{cases}

\begin{cases} x\geq 1,& &x^2-2x=0; \end{cases}

\begin{cases} x\geq 1,& &x=0,\;x=2; \end{cases}

Что равносильно x=2.

б) Второй случай:

\begin{cases} x-1<0,& &x^2-2(1-x)=2; \end{cases}

\begin{cases} x<1,& &x^2+2x-4=0; \end{cases}

\begin{cases} x<1,& &x=-1\pm\sqrt5; \end{cases}

Что равносильно x=-1-\sqrt5

Ответ: 2;\;-1-\sqrt5

6) Решить уравнение: |x^2+5x+6|=2.

Можно было бы действовать согласно правилу раскрытия модуля, но проще будет в данном случае рассуждать так:

Внутри модуля |...| может «скрываться» как 2, так и -2.

Поэтому x^2+5x+6=2 или x^2+5x+6=-2

x^2+5x+4=0 или x^2+5x+8=0

Из первого уравнения x=-4 или x=-1, а второе уравнение корней не имеет.

Ответ: -4;\;-1.

 

7) Решить уравнение: |x^3-x|=x+4.

Раскрываем модуль согласно правилу раскрытия модуля:

а) Первый случай:

\begin{cases} x^3-x\geq 0,& &x^3-x=x+4;& \end{cases}

Рассмотрим отдельно первую строку системы:

x^3-x\geq 0

x(x^2-1)\geq 0

x(x-1)(x+1)\geq 0

Рассмотрим уравнение из системы:

x^3-x=x+4 или x^3-2x-4=0

Разложим на множители левую часть уравнения способом группировки, предварительно разбив среднее слагаемое на два:

x^3-4x+2x-4=0

x(x^2-4)+2(x-2)=0

x(x-2)(x+2)+2(x-2)=0

(x-2)(x(x+2)+2)=0

(x-2)(x^2+2x+4)=0

Откуда x=2 (трехчлен в скобках корней не имеет).

Данный корень удовлетворяет первой строке системы, он пойдет  в ответ.

б) Второй случай:

\begin{cases} x^3-x< 0,& &-x^3+x=x+4;& \end{cases}

\begin{cases} x^3-x< 0,& &x=-\sqrt[3]4;& \end{cases}

Решение неравенства системы:

Корень x=-\sqrt[3]4 удовлетворяет решению неравенства системы.

Собираем решения.

Ответ: 2;\;-\sqrt[3]4

 

Также, смотрите «Модуль. Простейшие неравенства с модулем» здесь.

Вы можете пройти тест  по теме «Модуль. Раскрытие модуля. Простешие уравнения с модулем»

egemaximum.ru

Модуль числа

Модулем неотрицательного действительного числа a называют само это число:

|а| = а

Модулем отрицательного действительного числа х называют противоположное число:

|а| = - а

Короче это записывают так:

Модулем числа а называют расстояние (в единичных отрезках) от начала координат до точки А(а).

Модуль числа 5 равен 5, так как точка В(5) удалена от начала отсчета на 5 единичных отрезков. Пишут: |5| = 5

Расстояние точки М(-6) от начала отсчета О равно 6 единичным отрезкам. Число 6 называют модулем числа -6. Пишут: |-6| = 6

Модуль числа не может быть отрицательным. Для положительного числа и нуля он равен самому числу, а для отрицательного – противоположному числу. Противоположные числа имеют равные модули:

|-а| = |а|

Модуль числа 0 равен 0, так как точка с координатой 0 совпадает с началом отсчета 0, т.е. удалена от нее на 0 единичных отрезков:

|0| = 0

На практике используют различные свойства модулей:

|а| ? 0

|а·b| = |а| · |b|

|а|n = аn , n є Z, a ? 0, n > 0

|а| = | - а|

|а + b|  ?  |а| + |b|

|а·q| = q·|а| , где q - положительное число

|а|2 = а2

Значение |a - b|  равно расстоянию на числовой прямой между точками, изображающими числа a и b.

Пример 1.

, т.к. 

, т.к. 

Пример 2.

Упростить выражение  , если a

Решение.

Так как по условию а

Ответ: 

Пример 3.

Вычислить

Решение.

Имеем

Теперь раскроем знаки модулей.

Воспользуемся тем, что 1 0.

Но тогда |?3 - 2| = -(?3 - 2) = 2- ?3 ,

а |?3 - 1| = ?3 - 1

В итоге получаем

Ответ: 1

Здесь Вы нашли ответ на вопрос : что такое модуль числа , и какие его свойства.

mirurokov.ru

Решение уравнений с модулем

Решение уравнений и неравенств с модулем часто вызывает затруднения. Однако, если хорошо понимать, что такое модуль числа,  и как правильно раскрывать выражения, содержащие знак модуля, то наличие в уравнении выражения, стоящего под знаком модуля, перестает быть препятствием для его решения.

Немного теории. Каждое число имеет две характеристики: абсолютное значение числа, и его знак.

Например, число +5, или просто 5 имеет знак "+" и абсолютное значение 5.

Число -5  имеет знак "-" и абсолютное значение 5.

Абсолютные значения чисел 5 и -5 равны 5.

Абсолютное значение числа х называется модулем числа и обозначается |x|.

Как мы видим, модуль числа равен самому числу, если это число больше или равно нуля, и этому числу с противоположным знаком, если это число отрицательно.

Это же касается любых выражений, которые стоят под знаком модуля.

Правило раскрытия модуля выглядит так:

|f(x)|= f(x),   если f(x) ≥ 0, и

|f(x)|= - f(x), если f(x) < 0

Например |x-3|=x-3,  если x-3≥0 и |x-3|=-(x-3)=3-x, если x-3<0.

Чтобы решить уравнение , содержащее выражение, стоящее под знаком модуля, нужно сначала раскрыть модуль по правилу раскрытия модуля.

Тогда наше уравнение или неравенство преобразуется в два  различных уравнения, существующих на двух различных числовых промежутках.

Одно уравнение  существует на числовом  промежутке, на котором выражение, стоящее под знаком модуля неотрицательно.

А второе уравнение существует на промежутке, на котором выражение, стоящее под знаком модуля отрицательно.

Рассмотрим простой пример.

Решим уравнение:

|x-3|=-x2+4x-3

1.  Раскроем модуль.

|x-3|=x-3, если x-3≥0, т.е. если х≥3

|x-3|=-(x-3)=3-x, если  x-3<0, т.е. если х<3

2. Мы получили два числовых промежутка:  х≥3 и х<3.

Рассмотрим, в какие уравнения преобразуется исходное уравнение на каждом промежутке:

А) При  х≥3 |x-3|=x-3, и наше уранение имеет вид:

x-3=-x2+4x-3

Внимание! Это уравнение существует только на промежутке х≥3!

Раскроем скобки, приведем подобные члены:

x2 -3х=0

и решим это уравнение.

Это уравнение имеет корни:

х1=0, х2=3

Внимание! поскольку  уравнение x-3=-x2+4x-3 существует только на промежутке х≥3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х2=3.

Б) При x<0 |x-3|=-(x-3) = 3-x, и наше уравнение приобретает вид:

3-x=-x2+4x-3

Внимание! Это уравнение существует только на промежутке х<3!

Раскроем скобки, приведем подобные члены. Получим уравнение:

x2-5х+6=0

х1=2, х2=3

Внимание! поскольку  уравнение 3-х=-x2+4x-3 существует только на промежутке x<3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х1=2.

Итак: из первого промежутка мы берем только корень х=3, из второго - корень  х=2.

Ответ:  х=3, х=2

 

ege-ok.ru

Модуль числа. | tutomath

Модуль числа вводится новое понятие в математике. Разберем подробно, что такое модуль числа и как с ним работать?

Рассмотрим пример:

Мы вышли из дома в магазин. Прошли 300 м, математически это выражение можно записать как +300, смысл числа 300 от знака “+” не поменяется. Расстояние или модуль числа в математике это одно и тоже можно записать так: |300|=300. Знак модуля числа обозначается двумя вертикальными линиями.

Модуль числа

А потом в обратном направлении прошли 200м. Математически обратный путь мы можем записать как -200. Но мы не говорим так “мы прошли минус двести метров”, хотя мы вернулись, потому что расстояние как величина остается положительной. Для этого в математике ввели понятие модуля. Записать расстояние или модуль числа -200 можно так: |-200|=200.

Модуль числа 200

Свойства модуля.

Определение:Модуль числа или абсолютная величина числа – это расстояние от отправной точки до точки назначения.

Модуль целого числа не равного нулю, всегда положительное число.

Записывается модуль так:

1. Модуль положительного числа равно самому числу.|a|=a

2. Модуль отрицательного числа равно противоположному числу.|-a|=a

3. Модуль нуля, равен нулю.|0|=0

4. Модули противоположных чисел равны.|a|=|-a|=a

Вопросы по теме:Что такое модуль числа?Ответ: модуль — это расстояние от отправной точки до точки назначения.

Если перед целым числом поставить знак “+” , что произойдет?Ответ: число не поменяет свой смысл, например, 4=+4.

Если перед целым числом поставить знак “-” , что произойдет?Ответ: число изменится на противоположное число, например, 4 и -4.

У каких чисел одинаковый модуль?Ответ: у положительных чисел и нуля модуль будет тот же. Например, 15=|15|.

У каких чисел модуль – противоположное число?Ответ: у отрицательных чисел, модуль будет равен противоположному числу. Например, |-6|=6.

Пример №1:Найдите модуль чисел: а) 0 б) 5 в) -7?

Решение:а) |0|=0б) |5|=5в)|-7|=7

Пример №2:Существуют ли два различных числа, модули которых равны?

Решение:|10|=10|-10|=10

Модули противоположных чисел равны.

Пример №3:Какие два противоположных числа, имеют модуль 9?

Решение:|9|=9|-9|=9

Ответ: 9 и -9.

Пример №4:Выполните действия: а) |+5|+|-3| б) |-3|+|-8| в)|+4|-|+1|

Решение:а) |+5|+|-3|=5+3=8б) |-3|+|-8|=3+8=11в)|+4|-|+1|=4-1=3

Пример №5:Найдите: а) модуль числа 2 б) модуль числа 6 в) модуль числа 8 г) модуль числа 1 д) модуль числа 0.Решение:

а) модуль числа 2 обозначается как |2| или |+2| это одно и тоже.|2|=2

б) модуль числа 6 обозначается как |6| или |+6| это одно и тоже.|6|=6

в) модуль числа 8 обозначается как |8| или |+8| это одно и тоже.|8|=8

г) модуль числа 1 обозначается как |1| или |+1| это одно и тоже.|1|=1

д) модуль числа 0 обозначается как |0|, |+0| или |-0| это одно и тоже.|0|=0

tutomath.ru

Модуль отрицательного числа | Математика

Модуль числа a — это расстояние в единичных отрезках на координатной прямой от начала отсчёта до точки с координатой a.

Расстояние от начала отсчёта — точки О с координатой 0 — до точки с отрицательной координатой -а равно а.

-а и а — противоположные числа.

Таким образом, модуль отрицательного числа равен противоположному ему числу.

В формулах принято записывать модуль отрицательного числа так: |а|, где а<0,

(а не  |-а|).

Таким образом,

    \[a < 0, \Rightarrow \left| a \right| = - a.\]

Примеры.

Так как модуль отрицательного числа равен противоположному ему числу, то

    \[\left| { - 5} \right| = 5;\]

    \[\left| { - 0,14} \right| = 0,14;\]

    \[\left| { - 8,9} \right| = 8,9;\]

    \[\left| { - \frac{3}{7}} \right| = \frac{3}{7};\]

    \[\left| { - 6\frac{2}{{11}}} \right| = 6\frac{2}{{11}}.\]

Светлана МихайловнаПоложительные и отрицательные числа

www.for6cl.uznateshe.ru

Как извлечь из модуля | Сделай все сам

Модуль – это безусловная величина числа либо выражения. Если требуется раскрыть модуль, то, согласно его свойствам, итог этой операции неизменно должен быть неотрицательным.

Инструкция

1. Если под знаком модуля находится число, значение которого вам знаменито, то раскрыть его дюже примитивно. Модуль числа a, либо |a|, будет равен самому этому числу, если a огромнее либо равно 0. Если a поменьше нуля, то есть является негативным, то его модуль будет равен противоположному ему, то есть |-a|=a. Согласно этому свойству, модули противоположных чисел равны, то есть |-a|=|a|.

2. В том случае, если подмодульное выражение возведено в квадрат либо в иную четную степень, то дозволено легко опустить скобки модуля, потому что всякое число, возведенное в четную степень, является неотрицательным. Если необходимо извлечь квадратный корень из квадрата числа, то это также будет модуль этого числа, следственно модульные скобки дозволено опустить и в этом случае.

3. Если в подмодульном выражении имеются неотрицательные числа, то их дозволено перенести за пределы модуля. |c*x|=c*|x|, где с – неотрицательное число.

4. Когда имеет место уравнение вида |x|=|c|, где x является желанной переменной, а c действительным числом, то раскрыто оно должно быть дальнейшим образом: x=+-|c|.

5. Если надобно решить уравнение, содержащее модуль выражения, итогом которого должно быть вещественное число, то знак модуля раскрывают, исходя из свойств этой неопределенности. К примеру, если имеется выражение |x-12|, то, если (x-12) – неотрицательное, оно останется постоянным, то есть модуль раскроется как (x-12). Но |x-12| превратится в (12-x), если (x-12) поменьше нуля. То есть, модуль раскрывается в зависимости от значения переменной либо выражения в скобках. Когда знак итога выражения неведом, то задача превращается в систему уравнений, первое из которых рассматривает вероятность негативного значения подмодульного выражения, а второе – правильного.

6. Изредка модуль дозволено однозначно раскрыть, даже если его значение неведомо по условиям задачи. Скажем, если под модулем находится квадрат переменной, то итог будет правильным. И напротив, если там заведомо негативное выражение, то модуль раскрывается с противоположным знаком.

jprosto.ru

Модуль числа

Модуль числа a — это расстояние от начала координат до точки А(a).

Чтобы понять это определение, подставим вместо переменной a любое число, например 3 и попробуем снова прочитать его:

Модуль числа 3 — это расстояние от начала координат до точки А(3).

Становится ясно, что модуль это ни что иное, как обычное расстояние. Давайте попробуем увидеть расстояние от начала координат до точки А(3)

modul_chisla1

Расстояние от начала координат до точки А(3) равно 3 (трём единицам или трём шагам).

Модуль числа обозначает двумя вертикальными линиями, например:

Модуль числа 3 обозначается так: |3|

Модуль числа 4 обозначается так: |4|

Модуль числа 5 обозначается так: |5|

Мы искали модуль числа 3 и выяснили, что он равен 3. Так и записываем:

|3| = 3

Читается как: «Модуль числа три равен три»

Теперь попробуем найти модуль числа -3. Опять же возвращаемся к определению и подставляем в него число -3. Только вместо точки A используем новую точку B. Точку A мы уже использовали в первом примере.

Модулем числа —3 называют расстояние от начала координат до точки B(—3).

Расстояние от одного пункта до другого не может быть отрицательным. Поэтому и модуль любого отрицательного числа, будучи являясь расстоянием тоже не будет отрицательным. Модуль числа -3 будет число 3. Расстояние от начала координат до точки B(-3) равно также трём единицам:

modul_chisla2

|-3| = 3

Читается как: «Модуль числа минус три равен три»

Модуль числа 0 равен 0, та как точка с координатой 0 совпадает  с началом координат, т.е. расстояние от начала координат до точки O(0) равно нулю:

modul_chisla3

|0| = 0

«Модуль нуля равен нулю»

Делаем выводы:

  • Модуль числа не может быть отрицательным;
  • Для положительного числа и нуля модуль равен самому числу, а для отрицательного – противоположному числу;
  • Противоположные числа имеют равные модули.

Примеры:

| 1 | = 1

| -1| = 1

| 2 | = 2

| -2| = 2

| 0 | = 0

Противоположные числа

Числа, отличающиеся только знаками называют противоположными. Например, числа −2 и 2 являются противоположными. Они отличаются только знаками. У числа −2 знак минуса, а у 2 знак плюса, но мы его не видим, потому что плюс, как мы говорили ранее, по традиции не пишут.

Еще примеры противоположных чисел:

−1 и 1

−3 и 3

−5 и 5

−9 и 9

Противоположные числа имеют равные модули. Например, найдём модули для −2 и 2

|−2| и |2|

2 = 2

modul_chisla4

На рисунке видно, что расстояние от начала координат до точек A(−2) и B(2) одинаково равно двум шагам.

Понравился урок? Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Навигация по записям

spacemath.xyz