Учимся решать простейшие логарифмические уравнения. Как решается логарифм


Логарифмы: примеры и решения

Как известно, при перемножении выражений со степенями их показатели всегда складываются (ab*ac = ab+c). Этот математический закон был выведен Архимедом, а позже, в VIII веке, математик Вирасен создал таблицу целых показателей. Именно они послужили для дальнейшего открытия логарифмов. Примеры использования этой функции можно встретить практически везде, где требуется упростить громоздкое умножение на простое сложение. Если вы потратите минут 10 на прочтение этой статьи, мы вам объясним, что такое логарифмы и как с ними работать. Простым и доступным языком.

Определение в математике

Логарифмом называется выражение следующего вида: logab=c, то есть логарифмом любого неотрицательного числа (то есть любого положительного) "b" по его основанию "a" считается степень "c", в которую необходимо возвести основание "a", чтобы в итоге получить значение "b". Разберем логарифм на примерах, допустим, есть выражение log28. Как найти ответ? Очень просто, нужно найти такую степень, чтобы из 2 в искомой степени получить 8. Проделав в уме некоторые расчеты, получаем число 3! И верно, ведь 2 в степени 3 дает в ответе число 8.

логарифмы примеры

Разновидности логарифмов

Для многих учеников и студентов эта тема кажется сложной и непонятной, однако на самом деле логарифмы не так страшны, главное - понять общий их смысл и запомнить их свойста и некоторые правила. Существует три отдельных вида логарифмических выражений:

  1. Натуральный логарифм ln a, где основанием является число Эйлера (e = 2,7).
  2. Десятичный логарифм lg a, где основанием служит число 10.
  3. Логарифм любого числа b по основанию a>1.

Каждый из них решается стандартным способом, включающим в себя упрощение, сокращение и последующее приведение к одному логарифму с помощью логарифмических теорем. Для получения верных значений логарифмов следует запомнить их свойства и очередность действий при их решениях.

Правила и некоторые ограничения

В математике существует несколько правил-ограничений, которые принимаются как аксиома, то есть не подлежат обсуждению и являются истиной. Например, нельзя числа делить на ноль, а еще невозможно извлечь корень четной степени из отрицательных чисел. Логарифмы также имеют свои правила, следуя которым можно с легкостью научиться работать даже с длинными и емкими логарифмическими выражениями:

  • основание "a" всегда должно быть больше нуля, и при этом не быть равным 1, иначе выражение потеряет свой смысл, ведь "1" и "0" в любой степени всегда равны своим значениям;
  • если а > 0, то и аb>0, получается, что и "с" должно быть больше нуля.

Как решать логарифмы?

К примеру, дано задание найти ответ уравнения 10х= 100. Это очень легко, нужно подобрать такую степень, возведя в которую число десять, мы получим 100. Это, конечно же, квадратичная степень! 102=100.

А теперь давайте представим данное выражение в виде логарифмического. Получим log10100 = 2. При решении логарифмов все действия практически сходятся к тому, чтобы найти ту степень, в которую необходимо ввести основание логарифма, чтобы получить заданное число.

Для безошибочного определения значенияя неизвестной степени необходимо научиться работать с таблицей степеней. Выглядит она следующим образом:

логарифмы примеры и решения

Как видите, некоторые показатели степени можно угадать интуитивно, если имеется технический склад ума и знание таблицы умножения. Однако для больших значений потребуется таблица степеней. Ею могут пользоваться даже те, кто совсем ничего не смыслит в сложных математических темах. В левом столбце указаны числа (основание a), верхний ряд чисел - это значение степени c, в которую возводится число a. На пересечении в ячейках определены значения чисел, являющиеся ответом (ac=b). Возьмем, к примеру, самую первую ячейку с числом 10 и возведем ее в квадрат, получим значение 100, которое указано на пересечении двух наших ячеек. Все так просто и легко, что поймет даже самый настоящий гуманитарий!

Уравнения и неравенства

Получается, что при определенных условиях показатель степени - это и есть логарифм. Следовательно, любые математические численные выражения можно записать в виде логарифмического равенства. Например, 34=81 можно записать в виде логарифма числа 81 по основанию 3, равному четырем (log381 = 4). Для отрицательных степеней правила такие же: 2-5= 1/32 запишем в виде логарифма, получим log2 (1/32) = -5. Одной из самых увлекательных разделов математики является тема "логарифмы". Примеры и решения уравнений мы рассмотрим чуть ниже, сразу же после изучения их свойств. А сейчас давайте разберем, как выглядят неравенства и как их отличить от уравнений.

как решать логарифмы примеры

Дано выражение следующего вида: log2(x-1) > 3 - оно является логарифмическим неравенством, так как неизвестное значение "х" находится под знаком логарифма. А также в выражении сравниваются две величины: логарифм искомого числа по основанию два больше, чем число три.

Самое главное отличие между логарифмическими уравнениями и неравенствами заключается в том, что уравнения с логарифмами (пример - логарифм2x = √9)подразумевают в ответе одно или несколько определенных числовых значений, тогда как при решении неравенства определяются как область допустимых значений, так и точки разрыва этой функции. Как следствие, в ответе получается не простое множество отдельных чисел как в ответе уравнения, а а непрерывный ряд или набор чисел.

свойства логарифмов с примерами

Основные теоремы о логарифмах

При решении примитивных заданий по нахождению значений логарифма, его свойства можно и не знать. Однако когда речь заходит о логарифмических уравнениях или неравенствах, в первую очередь, необходимо четко понимать и применять на практике все основные свойства логарифмов. С примерами уравнений мы познакомимся позже, давайте сначала разберем каждое свойство более подробно.

  1. Основное тождество выглядит так: аlogaB=B. Оно применяется только при условии, когда а больше 0, не равно единице и B больше нуля.
  2. Логарифм произведения можно представить в следующей формуле: logd(s1*s2) = logds1 + logds2. При этом обязательным условием является: d, s1 и s2 > 0; а≠1. Можно привести доказательство для этой формулы логарифмов, с примерами и решением. Пусть logas1 = f1 и logas2 = f2, тогда af1= s1, af2= s2. Получаем, что s1*s2 = af1*af2= af1+f2 (свойства степеней), а далее по определению: loga(s1*s2)= f1+ f2 = logas1 + logas2, что и требовалось доказать.
  3. Логарифм частного выглядит так: loga(s1/s2) = logas1- logas2.
  4. Теорема в виде формулы приобретает следующий вид: logaqbn = n/q logab.

Называется эта формула "свойством степени логарифма". Она напоминает собой свойства обычных степеней, и неудивительно, ведь вся математика держится на закономерных постулатах. Давайте посмотрим на доказательство.

Пусть logab = t, получается at=b. Если возвести обе части в степень m: atn = bn;

но так как atn= (aq)nt/q = bn, следовательно logaqbn = (n*t)/t, тогда logaqbn = n/q logab. Теорема доказана.

Примеры задач и неравенств

Самые распространенные типы задач на тему логарифмов - примеры уравнений и неравенств. Они встречаются практически во всех задачниках, а также входят в обязательную часть экзаменов по математике. Для поступления в университет или сдачи вступительных испытаний по математике необходимо знать, как правильно решать подобные задания.

примеры десятичных логарифмов

К сожалению, единого плана или схемы по решению и определению неизвестного значения логарифма не существует, однако к каждому математическому неравенству или логарифмическому уравнению можно применить определенные правила. Прежде всего следует выяснить, можно ли упростить выражение или привести к общему виду. Упрощать длинные логарифмические выражения можно, если правильно использовать их свойства. Давайте скорее с ними познакомимся.

При решении же логарифмических уравнений, следует определить, какой перед нами вид логарифма: пример выражения может содержать натуральный логарифм или же десятичный.

Вот примеры десятичных логарифмов: ln100, ln1026. Их решение сводится к тому, что нужно определить ту степень, в которой основание 10 будет равно 100 и 1026 соответственно. Для решений же натуральных логарифмов нужно применить логарифмические тождества или же их свойства. Давайте на примерах рассмотрим решение логарифмических задач разного типа.

 уравнения с логарифмами примеры

Как использовать формулы логарифмов: с примерами и решениями

Итак, рассмотрим примеры использования основных теорем о логарифмах.

  1. Свойство логарифма произведения можно применять в заданиях, где необходимо разложить большое значение числа b на более простые сомножители. Например, log24 + log2128 = log2(4*128) = log2512. Ответ равен 9.
  2. log48 = log22 23 = 3/2 log22 = 1,5 - как видите, применяя четвертое свойство степени логарифма, удалось решить на первый взгляд сложное и нерешаемое выражение. Необходимо всего лишь разложить основание на множители и затем вынести значения степени из знака логарифма.

натуральные логарифмы примеры решения

Задания из ЕГЭ

Логарифмы часто встречаются на вступительных экзаменах, особенно много логарифмических задач в ЕГЭ (государственный экзамен для всех выпускников школ). Обычно эти задания присутствуют не только в части А (самая легкая тестовая часть экзамена), но и в части С (самые сложные и объемные задания). Экзамен подразумевает точное и идеальное знание темы "Натуральные логарифмы".

Примеры и решения задач взяты из официальных вариантов ЕГЭ. Давайте посмотрим, как решаются такие задания.

Дано log2(2x-1) = 4. Решение:перепишем выражение, немного его упростив log2(2x-1) = 22, по определению логарифма получим, что 2x-1 = 24, следовательно 2x = 17; x = 8,5.

Ниже даны несколько рекомендаций, следуя которым можно с легкостью решать все уравнения, содержащие выражения, которые стоят под знаком логарифма.

  • Все логарифмы лучше всего приводить к одному основанию, чтобы решение не было громоздким и запутанным.
  • Все выражение, стоящие под знаком логарифма, указываются как положительные, поэтому при вынесении множителем показателя степени выражения, который стоит под знаком логарифма и в качестве его основания, остающееся под логарифмом выражение должно быть положительно.

fb.ru

Логарифмы, примеры решений

Теория про логарифмы

Логарифм по основанию 10 называется десятичным логарифмом и обозначается \lg x:

    \[ \log _{10} x = \lg x \]

а логарифм по основанию e = 2,718281828 ... называют натуральным и обозначают \ln x:

    \[ \log _{e} x = \ln x \]

Примеры

ПРИМЕР 3
Задание Вычислить значение выражения

    \[ \frac{1}{\log _{12} 18} + \frac{1}{\log _{27} 18} \]

Решение Перейдем в каждом из слагаемых к логарифму по основанию 18, используя формулу перехода \log _{a} b = \frac{1}{\log _{b} a} . Получим:

    \[ \frac{1}{\log _{12} 18} + \frac{1}{\log _{27} 18} = \log _{18} 12 + \log _{18} 27 \]

Так как сумма логарифмов равна логарифму произведения, последняя сумма перепишется в виде:

    \[ \frac{1}{\log _{12} 18} + \frac{1}{\log _{27} 18} = \log _{18} 12 + \log _{18} 27 = \log _{18} (12 \cdot 27) = \log _{18} 324 \]

Число 324 можно представить как степень 18, получим

    \[ \frac{1}{\log _{12} 18} + \frac{1}{\log _{27} 18} = \log _{18} 324 = \log _{18} 18^{2} \]

далее выносим степень как коэффициент перед знаком логарифма:

    \[ \frac{1}{\log _{12} 18} + \frac{1}{\log _{27} 18} = \log _{18} 18^{2} = 2 \cdot \log _{18} 18 \]

Учитывая, что \log _{a} a = 1, окончательно будем иметь:

    \[ \frac{1}{\log _{12} 18} + \frac{1}{\log _{27} 18} = 2 \cdot \log _{18} 18 = 2 \cdot 1= 2 \]

Ответ
ПРИМЕР 5
Задание Вычислить \log _{8} 7 \cdot \log _{7} 6 \cdot \log _{6} 4
Решение Перейдем во всех логарифмах к основанию 2, используя формулу перехода к новому основанию:

    \[ \log _{a} b = \frac{\log _{c} b}{\log _{c} a} \]

получим

    \[ \log _{8} 7 \cdot \log _{7} 6 \cdot \log _{6} 4 = \frac{\log _{2} 7}{\log _{2} 8} \cdot \frac{\log _{2} 6}{\log _{2} 7} \cdot \frac{\log _{2} 4}{\log _{2} 6} = \frac{\log _{2} 4}{\log _{2} 8} \]

Представим 4 и 8 в виде степени двойки и вынесем полученные степени за знак логарифма как коэффициент:

    \[ \log _{8} 7 \cdot \log _{7} 6 \cdot \log _{6} 4 = \frac{\log _{2} 4}{\log _{2} 8} = \frac{\log _{2} 2^{2}}{\log _{2} 2^{3}} = \frac{2 \cdot \log _{2} 2}{3 \cdot \log _{2} 2} = \frac{2}{3} \]

Ответ
Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Логарифмические выражения

Логарифмические выражения, решение примеров. В этой статье мы рассмотрим задачи связанные с решением логарифмов. В заданиях ставится вопрос о нахождении значения выражения. Нужно отметить, что понятие логарифма используется во многих заданиях и понимать его смысл крайне важно. Что касается ЕГЭ, то логарифм используется при решении уравнений, в прикладных задачах, также в заданиях связанных с исследованием функций.

Приведём примеры для понимания самого смысла логарифма:

Основное логарифмическое тождество:

Свойства логарифмов, которые необходимо  всегда помнить:

*Логарифм произведения равен сумме логарифмов сомножителей.

* * *

*Логарифм частного (дроби) равен разности логарифмов сомножителей.

* * *

*Логарифм степени равен произведению показателя степени на логарифм ее основания.

* * *

*Переход к новому основанию

* * *

Ещё свойства:

* * *

Вычисление логарифмов тесно связано с использованием свойств показателей степени.

Перечислим некоторые из них:

Суть данного свойства заключается в том, что при переносе числителя в знаменатель и наоборот, знак показателя степени меняется на противоположный.  Например:

Следствие из данного свойства:

* * *

При возведении степени в степень основание остаётся прежним, а показатели перемножаются.

* * *

При возведении в степень произведения в эту же степень возводится каждый множитель.

Так же необходимо знать следующее свойство:

Рассмотрим примеры:

*Данный контент (более 20 подробно решённых примеров) доступен только для зарегистрированных пользователей! Вкладка регистрации (входа) находится в ГЛАВНОМ МЕНЮ сайта. После прохождения регистрации войдите на сайт и обновите данную страницу.

Как вы убедились само понятие логарифма несложное. Главное то, что необходима хорошая практика, которая даёт определённый навык. Разумеется знание формул обязательно. Если навык в преобразовании элементарных логарифмов не сформирован, то при решении  простых заданий можно легко допустить ошибку.

Практикуйтесь, решайте сначала простейшие примеры из курса математики, затем переходите к более сложным. В будущем обязательно покажу, как решаются «страшненькие» логарифмы, таких на ЕГЭ не будет, но они представляют интерес, не пропустите!

На этом всё! Успеха Вам!

С уважением, Александр Крутицких

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

matematikalegko.ru

Простейшие логарифмические уравнения

18 сентября 2013

Сегодня мы научимся решать самые простые логарифмические уравнения, где не требуются предварительные преобразования и отбор корней. Но если научиться решать такие уравнения, дальше будет намного проще.

Простейшее логарифмическое уравнение — это уравнение вида loga f (x) = b, где a, b — числа (a > 0, a ≠ 1), f (x) — некоторая функция.

Отличительная особенность всех логарифмических уравнений — наличие переменной x под знаком логарифма. Если изначально в задаче дано именно такое уравнение, оно называется простейшим. Любые другие логарифмические уравнения сводятся к простейшим путем специальных преобразований (см. «Основные свойства логарифмов»). Однако при этом надо учитывать многочисленные тонкости: могут возникнуть лишние корни, поэтому сложные логарифмические уравнения будут рассмотрены отдельно.

Как решать такие уравнения? Достаточно заменить число, стоящее справа от знака равенства, логарифмом по тому же основанию, что и слева. Затем можно избавиться от знака логарифма. Получим:

loga f (x) = b ⇒ loga f (x) = loga a b ⇒ f (x) = a b

Получили обычное уравнение. Его корни являются корнями исходного уравнения.

Вынесение степеней

Зачастую логарифмические уравнения, которые внешне выглядят сложно и угрожающе, решаются буквально в пару строчек без привлечения сложных формул. Сегодня мы рассмотрим именно такие задачи, где все, что от вас потребуется — аккуратно свести формулу к канонической форме и не растеряться при поиске области определения логарифмов.

Сегодня, как вы уже наверняка догадались из названия, мы будем решать логарифмические уравнения по формулам перехода к канонической форме. Основной «фишкой» данного видеоурока будет работа со степенями, а точнее, вынесение степени из основания и аргумента. Давайте рассмотрим правило:

вынесение степени из аргумента логарифма для решения уравнения

Аналогичным образом можно вынести степень и из основания:

вынесение степени из основания логарифма пре решении уравнения

Как видим, если при вынесении степени из аргумента логарифма у нас просто появляется дополнительный множитель спереди, то при вынесении степени из основания — не просто множитель, а перевернутый множитель. Это нужно помнить.

Наконец, самое интересное. Данные формулы можно объединить, тогда мы получим:

Преобразование логарифмического уравнения

Разумеется, при выполнении данных переходов существуют определенные подводные камни, связанные с возможным расширением области определения или, наоборот, сужением области определения. Судите сами:

log3x 2 = 2 ∙ log3x

Если в первом случае в качестве x могло стоять любое число, отличное от 0, т. е. требование x ≠ 0, то во втором случае нас устроят лишь x, которые не только не равны, а строго больше 0, потому что область определения логарифма состоит в том, чтобы аргумент был строго больше 0. Поэтому напомню вам замечательную формулу из курса алгебры 8—9 класса:

Избавление от радикала и возникновение знака модуля

То есть, мы должны записать нашу формулу следующим образом:

log3x 2 = 2 ∙ log3 |x|

Тогда никакого сужения области определения не произойдет.

Однако в сегодняшнем видеоуроке никаких квадратов не будет. Если вы посмотрите на наши задачи, то увидите только корни. Следовательно, применять данное правило мы не будем, однако его все равно необходимо держать в голове, чтобы в нужный момент, когда вы увидите квадратичную функцию в аргументе или основании логарифма, вы вспомните это правило и все преобразования выполните верно.

Итак, первое уравнение:

Решите логарифмическое уравнение

Для решения такой задачи предлагаю внимательно посмотреть на каждое из слагаемых, присутствующих в формуле.

Давайте перепишем первое слагаемое в виде степени с рациональным показателем:

Решение логарифмического уравнения

Смотрим на второе слагаемое: log3 (1 − x). Здесь делать ничего не нужно, здесь все уже преобразовании.

Наконец, 0, 5. Как я уже говорил в предыдущих уроках, при решении логарифмических уравнений и формул очень рекомендую переходить от десятичных дробей к обычным. Давайте так и сделаем:

0,5 = 5/10 = 1/2

Перепишем наше исходную формулу с учетом полученных слагаемых:

Приведение логарифмического уравнения к простейшему

log3 (1 − x) = 1

Теперь переходим к канонической форме:

log3 (1 − x) = log3 3

Избавляемся от знака логарифма, приравнивая аргументы:

1 − x = 3

−x = 2

x = −2

Все, мы решили уравнение. Однако давайте все-таки подстрахуемся и найдем область определения. Для этого вернемся к исходной формуле и посмотрим:

1 − x > 0

−x > −1

x < 1

Наш корень x = −2 удовлетворяет это требование, следовательно, x = −2 является решением исходного уравнения. Вот теперь мы получили строгое четкое обоснование. Все, задача решена.

Переходим ко второй задаче:

Второе логарифмическое уравнение

Давайте разбираться с каждым слагаемым отдельно.

Выписываем первое:

Преобразование выражения, содержащего знак логарифма

Первое слагаемое мы преобразовали. Работаем со вторым слагаемым:

Упрощение слагаемых в логарифмическом уравнении

Наконец, последнее слагаемое, которое стоит справа от знака равенства:

Вычисление значения логарифма

Подставляем полученные выражения вместо слагаемых в полученной формуле:

Приведение логарифмического уравнения к каноническому виду

log3x = 1

Переходим к канонической форме:

log3x = log3 3

Избавляемся от знака логарифма, приравнивая аргументы, и получаем:

x = 3

Опять же, давайте на всякий случай подстрахуемся, вернемся к исходному уравнению и посмотрим. В исходной формуле переменная x присутствует только в аргументе, следовательно,

x > 0

Во втором логарифме x стоит под корнем, но опять же в аргументе, следовательно, корень должен быть больше 0, т. е. подкоренное выражение должно быть больше 0. Смотрим на наш корень x = 3. Очевидно, что он удовлетворяет это требование. Следовательно, x = 3 является решением исходного логарифмического уравнения. Все, задача решена.

Ключевых моментов в сегодняшнем видеоуроке два:

1) не бойтесь преобразовывать логарифмы и, в частности, не бойтесь выносить степени за знак логарифма, при этом помните нашу основную формулу: при вынесении степени из аргумента она выносится просто без изменений как множитель, а при вынесении степени из основания эта степень переворачивается.

2) второй момент связан с само канонической формой. Переход к канонической форме мы выполняли в самом конце преобразования формулы логарифмического уравнения. Напомню следующую формулу:

a = logb b a

Разумеется, под выражением «любое число b», я подразумеваю такие числа, которые удовлетворяют требования, накладываемые на основание логарифма, т. е.

1 ≠ b > 0

Вот при таких b, а поскольку основание у нас уже известно, то это требование будет выполняться автоматически. Но при таких b — любых, которые удовлетворяют данное требование — данный переход может быть выполнен, и у нас получится каноническая форма, в которой можно избавиться от знака логарифма.

Расширение области определения и лишние корни

В процессе преобразования логарифмических уравнений может произойти неявное расширение области определения. Зачастую ученики этого даже не замечают, что приводит к ошибкам и неправильным ответам.

Начнем с простейших конструкций. Простейшим логарифмическим уравнением называется следующее:

logaf(x) = b

Обратите внимание: x присутствует лишь в одном аргументе одного логарифма. Как мы решаем такие уравнения? Используем каноническую форму. Для этого представляем число b = logaab, и наше уравнение перепишется в следующем виде:

logaf(x) = logaab

Данная запись называется канонической формой. Именно к ней следует сводить любое логарифмическое уравнение, которое вы встретите не только в сегодняшнем уроке, но и в любой самостоятельной и контрольной работе.

Как прийти к канонической форме, какие приемы использовать — это уже вопрос практики. Главное понимать: как только вы получите такую запись, можно считать, что задача решена. Потому что следующим шагом будет запись:

f(x) = ab

Другими словами, мы избавляемся от знака логарифма и просто приравниваем аргументы.

К чему весь этот разговор? Дело в том, что каноническая форма применима не только к простейшим задачам, но и к любым другим. В частности и к тем, которые мы будем решать сегодня. Давайте посмотрим.

Первая задача:

В чем проблема данного уравнения? В том, что функция стоит сразу в двух логарифмах. Задачу можно свести к простейшей, просто вычтя один логарифм из другого. Но возникают проблемы с областью определения: могут появиться лишние корни. Поэтому давайте просто перенесем один из логарифмов вправо:

Вот такая запись уже гораздо больше похожа на каноническую форму. Но есть еще один нюанс: в канонической форме аргументы должны быть одинаковы. А у нас слева стоит логарифм по основанию 3, а справа — по основанию 1/3. Знаит, нужно привести эти основания к одному и тому же числу. Например, вспомним, что такое отрицательные степени:

1/3 = 3−1

А затем воспользуемся вынесем показатель «−1» за пределы log в качестве множителя:

Обратите внимание: степень, которая стояла в основании, переворачивается и превращается в дробь. Мы получили почти каноническую запись, избавившись от разных оснований, но взамен получили множитель «−1» справа. Давайте внесем этот множитель в аргумент, превратив его в степень:

Разумеется, получив каноническую форму, мы смело зачеркиваем знак логарифма и приравниваем аргументы. При этом напомню, что при возведении в степень «−1» дробь просто переворачивается — получается пропорция.

Воспользуемся основным свойством пропорции и перемножим ее крест-накрест:

(x− 4) (2x− 1) = (x− 5) (3x− 4)

2x2 − x− 8x + 4 = 3x2 − 4x− 15x + 20

2x2 − 9x + 4 = 3x2 − 19x + 20

x2 − 10x + 16 = 0

Перед нами приведенное квадратное уравнение, поэтому решаем его с помощью формул Виета:

(x − 8)(x − 2) = 0

x1 = 8; x2 = 2

Вот и все. Думаете, уравнение решено? Нет! За такое решение мы получим 0 баллов, потому что в исходном уравнении присутствуют сразу два логарифма с переменной x. Поэтому требуется учесть область определения.

И здесь начинается самое веселое. Большинство учеников путаются: в чем состоит область определения логарифма? Разумеется, все аргументы (у нас их два) должны быть больше нуля:

(x− 4)/(3x− 4) > 0

(x− 5)/(2x− 1) > 0

Каждое из этих неравенств нужно решить, отметить на прямой, пересечь — и только потом посмотреть, какие корни лежат на пересечении.

Скажу честно: такой прием имеет право на существование, он надежный, и вы получите правильный ответ, однако в нем слишком много лишних действий. Поэтому давайте еще раз пройдемся по нашему решению и посмотрим: где именно требуется применить область определения? Другими словами, нужно четно понимать, когда именно возникают лишние корни.

  1. Изначально у нас было два логарифма. Потом мы перенесли один из них вправо, но на область определения это не повлияло.
  2. Затем мы выносим степень из основания, но логарифмов все равно остается два, и в каждом из них присутствует переменная x.
  3. Наконец, мы зачеркиваем знаки log и получаем классическое дробно-рациональное уравнение.

Именно на последнем шаге происходит расширение области определения! Как только мы перешли к дробно-рациональному уравнению, избавившись от знаков log, требования к переменной xрезко поменялись!

Следовательно, область определения можно считать не в самом начале решения, а только на упомянутом шаге — перед непосредственным приравниваем аргументов.

Здесь-то и кроется возможность для оптимизации. С одной стороны, от нас требуется, чтобы оба аргумента были больше нуля. С другой — далее мы приравниваем эти аргументы. Следовательно, если хотя бы один и них будет положителен, то и второй тоже окажется положительным!

Вот и получается, что требовать выполнение сразу двух неравенств — это излишество. Достаточно рассмотреть лишь одну из этих дробей. Какую именно? Та, которая проще. Например, давайте разберемся с правой дробью:

(x− 5)/(2x− 1) > 0

Это типичное дробно-рациональное неравенство, решаем его методом интервалов:

Как расставить знаки? Возьмем число, заведомо большее всех наших корней. Например 1 млрд. И подставляем его дробь. Получим положительное число, т.е. справа от корня x = 5 будет стоять знак «плюс».

Затем знаки чередуются, потому что корней четной кратности нигде нет. Нас интересуют интервалы, где функция положительна. Следовательно, x∈ (−∞; −1/2)∪(5; +∞).

Теперь вспоминаем про ответы: x = 8 и x = 2. Строго говоря, это еще не ответы, а лишь кандидаты на ответ. Какой из них принадлежит указанному множеству? Конечно, x = 8. А вот x = 2 нас не устраивает по области определения.

Итого ответом к первому логарифмическому уравнению будет x = 8. Вот теперь мы получили грамотное, обоснованное решение с учетом области определения.

Переходим ко второму уравнению:

log5 (x − 9) = log0,5 4 − log5 (x − 5) + 3

Напоминаю, что если в уравнении присутствует десятичная дробь, то от нее следует избавиться. Другими словами, перепишем 0,5 в виде обычной дроби. Сразу замечаем, что логарифм, содержащий это основание, легко считается:

Это очень важны момент! Когда у нас и в основании, и в аргументе стоят степени, мы можем вынести показатели этих степеней по формуле:

Возвращаемся к нашему исходному логарифмическому уравнению и переписываем его:

log5 (x− 9) = 1 − log5 (x− 5)

Получили конструкцию, довольно близкую к канонической форме. Однако нас смущают слагаемые и знак «минус» справа от знака равенства. Давайте представим единицу как логарифм по основанию 5:

log5 (x − 9) = log5 51 − log5 (x − 5)

Вычтем логарифмы справа (при этом их аргументы делятся):

log5(x − 9) = log5 5/(x− 5)

Прекрасно. Вот мы и получили каноническую форму! Зачеркиваем знаки logи приравниваем аргументы:

(x − 9)/1 = 5/(x − 5)

Это пропорция, которая легко решается умножением крест-накрест:

(x − 9)(x − 5) = 51

x2 − 9x − 5x + 45 = 5

x2 − 14x + 40 = 0

Очевидно, перед нами приведенное квадратное уравнение. Оно легко решается с помощью формул Виета:

(x − 10)(x − 4) = 0

x1 = 10

x2 = 4

Мы получили два корня. Но это не окончательные ответы, а лишь кандидаты, потому что логарифмическое уравнение требует еще и проверки области определения.

Напоминаю: не надо искать, когда каждый из аргументов будет больше нуля. Достаточно потребовать, чтобы один аргумент — либо x − 9, либо 5/(x − 5) — был больше нуля. Рассмотрим первый аргумент:

x − 9 > 0

x > 9

Очевидно, что этому требованию удовлетворяет лишь x = 10. Это и есть окончательный ответ. Все задача решена.

Еще раз ключевые мысли сегодняшнего урока:

  1. Как только переменная x появляется в нескольких логарифмах, уравнение перестает быть элементарным, и для него придется считать область определения. Иначе можно запросто записать в ответ лишние корни.
  2. Работу с самой областью определения можно существенно упростить, если выписывать неравенство не сразу, а ровно в тот момент, когда мы избавляемся от знаков log. Ведь когда аргументы приравниваются друг к другу, достаточно потребовать, чтобы больше нуля был лишь один из них.

Разумеется, мы сами выбираем, из какого аргумента составлять неравенство, поэтому логично выбирать самый простой. Например, во втором уравнении мы выбрали аргумент (x − 9) —линейную функцию, в противовес дробно-рациональному второму аргументу. Согласитесь, решать неравенство x − 9 > 0 значительно проще, чем 5/(x − 5) > 0. Хотя результат получается один и тот же.

Данное замечание существенно упрощает поиск ОДЗ, но будьте внимательны: использовать одно неравенство вместо двух можно только том случае, когда аргументы именно приравниваются друг к другу!

Конечно, кто-то сейчас спросит: а что, бывает по-другому? Да, бывает. Например, в самом шаге, когда мы перемножаем два аргумента, содержащие переменную, заложена опасность возникновения лишних корней.

Судите сами: сначала требуется, чтобы каждый из аргументов был больше нуля, но после перемножения достаточно, чтобы их произведение было больше нуля. В результате упускается случай, когда каждая из этих дробей отрицательна.

Поэтому если вы только начинаете разбираться со сложными логарифмическими уравнениями, ни в коем случае не перемножайте логарифмы, содержащие переменную x — уж слишком часто это приведет к возникновению лишних корней. Лучше сделайте один лишний шаг, перенесите одно слагаемое в другую сторону составьте каноническую форму.

Ну, а как поступать в том случае, если без перемножения таких логарифмов не обойтись, мы обсудим в следующем видеоуроке.:)

Еще раз о степенях в уравнении

Сегодня мы разберем довольно скользкую тему, касающуюся логарифмических уравнений, а точнее — вынесение степеней из аргументов и оснований логарифмов.

Я бы даже сказал, речь пойдет о вынесении четных степеней, потому что именно с четными степенями возникает большинство затруднений и при решении реальных логарифмических уравнений.

Начнем с канонической формы. Допустим, у нас есть уравнение вида logaf(x) = b. В этом случае мы переписываем число b по формуле b = logaab. Получается следующее:

logaf(x) = logaab

Затем мы приравниваем аргументы:

f(x) = ab

Канонической формой называется предпоследняя формула. Именно к ней стараются свести любое логарифмическое уравнение, каким бы сложным и страшным оно не казалось на первый взгляд.

Вот давайте и попробуем. Начнем с первой задачи:

Предварительное замечание: как я уже говорил, все десятичные дроби в логарифмическом уравнении лучше перевести ее в обычные:

0,001 = 1/1000

0,5 = 5/10 = 1/2

Перепишем наше уравнение с учетом этого факта. Заметим, что и 1/1000, и 100 являются степенью десятки, а затем вынесем степени отовсюду, где они есть: из аргументов и даже из основания логарифмов:

И вот здесь у многих учеников возникает вопрос: «Откуда справа взялся модуль?» Действительно, почему бы не написать просто (х − 1)? Безусловно, сейчас мы напишем (х − 1), но право на такую запись нам дает учет области определения. Ведь в другом логарифме уже стоит (х − 1), и это выражение должно быть больше нуля.

Но когда мы выносим квадрат из основания логарифма, мы обязаны оставить в основании именно модуль. Поясню почему.

Дело в том, что с точки зрения математики вынесение степени равносильно извлечению корня. В частности, когда из выражения (x− 1)2 выносится квадрат, мы по сути извлекаем корень второй степени. Но корень из квадрата — это не что иное как модуль. Именно модуль, потому что даже если выражение х − 1 будет отрицательным, при возведении в квадрат «минус» все равно сгорит. Дальнейшее извлечение корня даст нам положительное число — уже без всяких минусов.

В общем, чтобы не допускать обидных ошибок, запомните раз и навсегда:

Корень четной степени из любой функции, которая возведена в эту же степень, равен не самой функции, а ее модулю:

Возвращаемся к нашему логарифмическому уравнению. Говоря про модуль, я утверждал, что мы можем безболезненно снять его. Это правда. Сейчас объясню почему. Строго говоря, мы обязаны были рассмотреть два варианта:

  1. x− 1 > 0 ⇒ |х − 1| = х − 1
  2. x − 1 < 0 ⇒ |х − 1| = −х + 1

Каждый из этих вариантов нужно было бы решить. Но есть одна загвоздка: в исходной формуле уже присутствует функция (х − 1) без всякого модуля. И следуя области определения логарифмов, мы вправе сразу записать, что х − 1 > 0.

Это требование должно выполняться независимо от всяких модулей и других преобразований, которые мы выполняем в процессе решения. Следовательно, второй вариант рассматривать бессмысленно — он никогда не возникнет. Даже если при решении этой ветки неравенства мы получим какие-то числа, они все равно не войдут в окончательный ответ.

В общем, можно считать, что |х − 1| = х − 1. Тогда наше уравнение перепишется в следующем виде:

Теперь мы буквально в одном шаге от канонической формы логарифмического уравнения. Давайте представим единицу в следующем виде:

1 = logx − 1 (x− 1)1

Кроме того, внесем множитель −4, стоящий справа, в аргумент:

logx − 1 10−4 = logx − 1 (x− 1)

Перед нами каноническая форма логарифмического уравнения. Избавляемся от знака логарифма:

10−4 = x− 1

Но поскольку в основании стояла функция (а не простое число), дополнительно потребуем, чтобы эта функция была больше нуля и не равна единице. Получится система:

Поскольку требование х − 1 > 0 выполняется автоматически (ведь х − 1 = 10−4), одно из неравенств можно вычеркнуть из нашей системы. Второе условие также можно вычеркнуть, потому что х − 1 = 0,0001 < 1. Итого получаем:

х = 1 + 0,0001 = 1,0001

Это единственный корень, который автоматически удовлетворяет всем требованиям области определения логарифма (впрочем, все требования были отсеяны как заведомо выполненные в условиях нашей задачи).

Итак, второе уравнение:

3 log3xx = 2 log9xx2

Чем это уравнение принципиально отличается от предыдущего? Уже хотя бы тем, что основания логарифмов — 3х и 9х — не являются натуральными степенями друг друга. Следовательно, переход, который мы использовали в предыдущем решении, невозможен.

Давайте хотя бы избавимся от степеней. В нашем случае единственная степень стоит во втором аргументе:

3 log3xx = 2 ∙ 2 log9x|x|

Впрочем, знак модуля можно убрать, ведь переменная х стоит еще и в основании, т.е. х > 0 ⇒ |х| = х. Перепишем наше логарифмическое уравнение:

3 log3xx = 4 log9xx

Получили логарифмы, в которых одинаковые аргументы, но разные основания. Как поступить дальше? Вариантов тут множество, но мы рассмотрим лишь два из них, которые наиболее логичны, а самое главное — это быстрые и понятные приемы для большинства учеников.

Первый вариант мы уже рассматривали: в любой непонятной ситуации переводите логарифмы с переменным основанием к какому-нибудь постоянному основанию. Например, к двойке. Формула перехода проста:

Разумеется, в роли переменной с должно выступать нормальное число: 1 ≠ c > 0. Пусть в нашем случае с = 2. Теперь перед нами обычное дробно-рациональное уравнение. Собираем все элементы слева:

Очевидно, что множитель log2x лучше вынести, поскольку он присутствует и в первой, и во второй дроби.

Дальше все просто. Произведение равно нулю, когда хотя бы один из множителей равен нулю:

log2x = 0;

х = 1;

3 log2 9х = 4 log2 3x

Разбиваем каждый log на два слагаемых:

log2 9х = log2 9 + log2x = 2 log2 3 + log2 x;

log2 3x = log2 3 + log2x

Перепишем обе части равенства с учетом этих фактов:

3 (2 log2 3 + log2x) = 4 (log2 3 + log2x)

6 log2 3 + 3 log2x = 4 log2 3 + 4 log2x

2 log2 3 = log2x

Теперь осталось внести двойку под знак логарифма (она превратится в степень: 32 = 9):

log2 9 = log2x

Перед нами классическая каноническая форма, избавляемся от знака логарифма и получаем:

х = 9

Как и предполагалось, этот корень оказался больше нуля. Осталось проверить область определения. Посмотрим на основания:

3х ≠ 1

9х ≠ 1

Но корень x = 9 удовлетворяет этим требованиям. Следовательно, он является окончательным решением.

Вывод из данного решения просто: не пугайтесь длинных выкладок! Просто в самом начале мы выбрали новое основание наугад — и это существенно усложнило процесс.

Но тогда возникает вопрос: какое же основание является оптимальным? Об этом я расскажу во втором способе.

Давайте вернемся к нашему исходному уравнению:

3 log3xx = 2 log9xx2

3 log3xx = 2 ∙ 2 log9x |x|

х > 0 ⇒ |х| = х

3 log3xx = 4 log9xx

Теперь немного подумаем: какое число или функция будет оптимальным основанием? Очевидно, что лучшим вариантом будет с = х — то, что уже стоит в аргументах. В этом случае формула logab = logcb/logca примет вид:

Другими словами, выражение просто переворачивается. При этом аргумент и основание меняется местами.

Эта формула очень полезна и очень часто применяется при решении сложных логарифмических уравнений. Однако при использовании этой формулы возникает один очень серьезный подводный камень. Если вместо основания мы подставляем переменную х, то на нее накладываются ограничения, которых ранее не наблюдалось:

0 < х ≠ 1

Такого ограничения в исходном уравнении не было. Поэтому следует отдельно проверить случай, когда х = 1. Подставим это значение в наше уравнение:

3 log3 1 = 4 log9 1

0 = 0

Получаем верное числовое равенство. Следовательно, х = 1 является корнем. Точно такой же корень мы нашли в предыдущем методе в самом начале решения.

А вот теперь, когда мы отдельно рассмотрели этот частный случай, смело полагаем, что х ≠ 1. Тогда наше логарифмическое уравнение перепишется в следующем виде:

3 logx 9x = 4 logx 3x

Раскладываем оба логарифма по той же формуле, что и раньше. При этом заметим, что logxx = 1:

3 (logx 9 + logxx) = 4 (logx 3 + logxx)

3 logx 9 + 3 = 4 logx 3 + 4

3 logx 32 − 4 logx 3 = 4 − 3

2 logx 3 = 1

Вот мы и пришли к канонической форме:

logx 9 = logxx1

x = 9

Получили второй корень. Он удовлетворяет требованию х ≠ 1. Следовательно, х = 9 наравне с х = 1 является окончательным ответом.

Как видим, объем выкладок немножко сократился. Но при решении реального логарифмического уравнения количество действий будет намного меньше еще и потому, что от вас не требуется столь подробно расписывать каждый шаг.

Ключевое правило сегодняшнего урока состоит в следующем: если в задаче присутствует четная степень, из которой извлекают корень такой же степени, то на выходе мы получи модуль. Однако этот модуль можно убрать, если обратить внимание на область определения логарифмов.

Но будьте внимательны: большинство учеников после этого урока считают, что им все понятно. Но при решении реальных задач они не могут воспроизвести всю логическую цепочку. В результате уравнение обрастает лишними корнями, а ответ получается неправильным.

Поэтому обязательно практикуйтесь: скачивайте задачи для самостоятельной работы, решайте их и сравнивайте с ответами. А у меня на сегодня все.:)

Смотрите также:

  1. Логарифмические уравнения: несколько видеоуроков по теме
  2. Квадратные уравнения относительно логарифма
  3. Знаки тригонометрических функций
  4. Пробный ЕГЭ-2011 по математике, вариант №2
  5. Пробный ЕГЭ по математике 2015: 5 вариант
  6. Хороший репетитор по математике: простой критерий

www.berdov.com

Логарифм. Как вычислить логарифм?

Логарифмом положительного числа \(c\) по основанию \(a\) \((a>0, a\neq1)\) называется показатель степени \(b\), в которую надо возвести основание \(a\), чтобы получить число \(c\) \((c>0)\), т.е.

\(a^{b}=c\)       \(\Leftrightarrow\)       \(\log_{a}{c}=b\)

Объясним проще. Например, \(\log_{2}{8}\) равен степени, в которую надо возвести \(2\), чтоб получить \(8\). Отсюда понятно, что \(\log_{2}{8}=3\).

Примеры:

                 

\(\log_{5}{25}=2\)

         

т.к. \(5^{2}=25\)

\(\log_{3}{81}=4\)

 

т.к. \(3^{4}=81\)

 

\(\log_{2}\)\(\frac{1}{32}\)\(=-5\)

 

т.к. \(2^{-5}=\)\(\frac{1}{32}\)

Аргумент и основание логарифма

Любой логарифм имеет следующую «анатомию»:

Аргумент и основание логарифма.png

Аргумент логарифма обычно пишется на его уровне, а основание - подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».

Как вычислить логарифм?

Чтобы вычислить логарифм - нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

Например, вычислите логарифм:  а) \(\log_{4}{16}\)     б) \(\log_{3}\)\(\frac{1}{3}\)     в) \(\log_{\sqrt{5}}{1}\)     г) \(\log_{\sqrt{7}}{\sqrt{7}}\)      д) \(\log_{3}{\sqrt{3}}\)

а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому: 

\(\log_{4}{16}=2\)

б) В какую степень надо возвести \(3\), чтобы получить \(\frac{1}{3}\)? В минус первую, так как именно отрицательная степень «переворачивает дробь» (здесь и далее пользуемся свойствами степени).

\(\log_{3}\)\(\frac{1}{3}\)\(=-1\)

в) В какую степень надо возвести \(\sqrt{5}\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!

\(\log_{\sqrt{5}}{1}=0\)

г) В какую степень надо возвести \(\sqrt{7}\), чтобы получить \(\sqrt{7}\)? В первую – любое число в первой степени равно самому себе.

\(\log_{\sqrt{7}}{\sqrt{7}}=1\)

д) В какую степень надо возвести \(3\), чтобы получить \(\sqrt{3}\)? Из свойств степени мы знаем, что корень – это дробная степень, и значит квадратный корень - это степень \(\frac{1}{2}\).

\(\log_{3}{\sqrt{3}}=\)\(\frac{1}{2}\)

Пример: Вычислить логарифм \(\log_{4\sqrt{2}}{8}\)

Решение:

\(\log_{4\sqrt{2}}{8}=x\)

                              

Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма: \(\log_{a}{c}=b\)       \(\Leftrightarrow\)       \(a^{b}=c\)

\((4\sqrt{2})^{x}=8\)

 

Что связывает \(4\sqrt{2}\) и \(8\)? Двойка, потому что и то, и другое число можно представить степенью двойки: \(4=2^{2}\)         \(\sqrt{2}=2^{\frac{1}{2}}\)         \(8=2^{3}\)

\({(2^{2}\cdot2^{\frac{1}{2}})}^{x}=2^{3}\)

 

Слева воспользуемся свойствами степени: \(a^{m}\cdot a^{n}=a^{m+n}\) и \((a^{m})^{n}=a^{m\cdot n}\)

\(2^{\frac{5}{2}x}=2^{3}\)

 

Основания равны, переходим к равенству показателей

\(\frac{5x}{2}\)\(=3\)

Умножим обе части уравнения на \(\frac{2}{5}\)

\(x=1,2\)

Получившийся корень и есть значение логарифма

Ответ: \(\log_{4\sqrt{2}}{8}=1,2\)

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: \(3^{x}=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).

А теперь решите уравнение: \(3^{x}=8\).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_{3}{8}\).

Хочу подчеркнуть, что \(\log_{3}{8}\), как и любой логарифм - это просто число. Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: \(1,892789260714.....\)

Пример: Решите уравнение \(4^{5x-4}=10\)

Решение:

\(4^{5x-4}=10\)

                              

\(4^{5x-4}\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма: \(a^{b}=c\)       \(\Leftrightarrow\)       \(\log_{a}{c}=b\)

\(\log_{4}{10}=5x-4\)

 

Зеркально перевернем уравнение, чтобы икс был слева

\(5x-4=\log_{4}{10}\)

 

Перед нами линейное уравнение. Перенесем \(4\) вправо.

И не пугайтесь логарифма, относитесь к нему как к обычному числу. 

\(5x=\log_{4}{10}+4\)

 

Поделим уравнение на 5

\(x=\)\(\frac{\log_{4}{10}+4}{5}\)

Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Ответ: \(\frac{\log_{4}{10}+4}{5}\)

Десятичный и натуральный логарифмы

Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

Натуральный логарифм: логарифм, у которого основание - число Эйлера \(e\) (равное примерно \(2,7182818…\)), и записывается такой логарифм как \(\ln{a}\).

То есть, \(\ln{a}\) это то же самое, что и \(\log_{e}{a}\), где \(a\) - некоторое число.

Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg{a}\).

То есть, \(\lg{a}\) это то же самое, что и \(\log_{10}{a}\), где \(a\) - некоторое число.

Основное логарифмическое тождество

У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

   \(a^{\log_{a}{c}}=c\)   

Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

Вспомним краткую запись определения логарифма:

если     \(a^{b}=c\),    то   \(\log_{a}{c}=b\)

То есть, \(b\) – это тоже самое, что \(\log_{a}{c}\). Тогда мы можем в формуле \(a^{b}=c\) написать \(\log_{a}{c}\) вместо \(b\). Получилось \(a^{\log_{a}{c}}=c\) – основное логарифмическое тождество.

Остальные свойства логарифмов вы можете найти здесь. С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.

Пример: Найдите значение выражения \(36^{\log_{6}{5}}\)

Решение:

\(36^{\log_{6}{5}}=\)

                              

Сразу пользоваться свойством \(a^{\log_{a}{c}}=c\) мы не можем, так как в основании степени и в основании логарифма – разные числа. Однако мы знаем, что \(36=6^{2}\)

\(=(6^{2})^{\log_{6}{5}}=\)

 

Зная формулу \((a^{m})^{n}=a^{m\cdot n}\), а так же то, что множители можно менять местами, преобразовываем выражение

\(=6^{2\cdot\log_{6}{5}}=6^{log_{6}{5}\cdot2}=(6^{log_{6}{5}})^{2}=\)

 

Вот теперь спокойно пользуемся основным логарифмическим тождеством.

\(=5^{2}=25\)

     

Ответ готов.

Ответ: \(25\)

Как число записать в виде логарифма?

Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_{2}{4}\) равен двум. Тогда можно вместо двойки писать \(\log_{2}{4}\). 

Но \(\log_{3}{9}\) тоже равен \(2\), значит, также можно записать \(2=\log_{3}{9}\)  . Аналогично и с \(\log_{5}{25}\), и с \(\log_{9}{81}\), и т.д. То есть, получается  

\(2=\log_{2}{4}=\log_{3}{9}=\log_{4}{16}=\log_{5}{25}=\log_{6}{36}=\log_{7}{49}...\)

Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

Точно также и с тройкой – ее можно записать как \(\log_{2}{8}\), или как \(\log_{3}{27}\), или как \(\log_{4}{64}\)… Здесь мы как аргумент пишем основание в кубе:

\(3=\log_{2}{8}=\log_{3}{27}=\log_{4}{64}=\log_{5}{125}=\log_{6}{216}=\log_{7}{343}...\)

И с четверкой:

\(4=\log_{2}{16}=\log_{3}{81}=\log_{4}{256}=\log_{5}{625}=\log_{6}{1296}=\log_{7}{2401}...\)

И с минус единицей:

\(-1=\) \(\log_{2}\)\(\frac{1}{2}\)\(=\) \(\log_{3}\)\(\frac{1}{3}\)\(=\) \(\log_{4}\)\(\frac{1}{4}\)\(=\) \(\log_{5}\)\(\frac{1}{5}\)\(=\) \(\log_{6}\)\(\frac{1}{6}\)\(=\) \(\log_{7}\)\(\frac{1}{7}\)\(...\)

И с одной третьей:

\(\frac{1}{3}\)\(=\log_{2}{\sqrt[3]{2}}=\log_{3}{\sqrt[3]{3}}=\log_{4}{\sqrt[3]{4}}=\log_{5}{\sqrt[3]{5}}=\log_{6}{\sqrt[3]{6}}=\log_{7}{\sqrt[3]{7}}...\)

И так далее.

Любое число \(a\) может быть представлено как логарифм с основанием \(b\):       \(a=\log_{b}{b^{a}}\)

Пример: Найдите значение выражения \(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)

Решение:

\(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)\(=\)

          

Превращаем единицу в логарифм с основанием \(2\): \(1=\log_{2}{2}\)

\(=\)\(\frac{\log_{2}{14}}{\log_{2}{2}+\log_{2}{7}}\)\(=\)

 

Теперь пользуемся свойством логарифмов: \(\log_{a}{b}+\log_{a}{c}=\log_{a}{(bc)}\)

\(=\)\(\frac{\log_{2}{14}}{\log_{2}{(2\cdot7)}}\)\(=\)\(\frac{\log_{2}{14}}{\log_{2}{14}}\)\(=\)

 

В числителе и знаменателе одинаковые числа – их можно сократить.

\(=1\)

 

Ответ готов.

Ответ: \(1\)

Смотрите также:Логарифмические уравненияЛогарифмические неравенства

cos-cos.ru

Решение логарифмических уравнений

20 мая 2014

Заключительные видео из длинной серии уроков про решение логарифмических уравнений. В этот раз мы будем работать в первую очередь с ОДЗ логарифма — именно из-за неправильного учета (или вообще игнорирования) области определения возникает большинство ошибок при решении подобных задач.

В этом коротком видеоуроке мы разберем применение формул сложения и вычитания логарифмов, а также разберемся с дробно-рациональными уравнениями, с которыми у многих учеников также возникают проблемы.

О чем пойдет речь? Главная формула, с которой я хотел бы разобраться, выглядит так:

loga (fg) = logaf + logag

Это стандартный переход от произведения к сумме логарифмов и обратно. Вы наверняка знаете эту формулу с самого начала изучения логарифмов. Однако тут есть одна заминка.

До тех пор, пока в виде переменных a, f и g выступают обычные числа, никаких проблем не возникает. Данная формула работает прекрасно.

Однако, как только вместоf и g появляются функции, возникает проблема расширения или сужения области определения в зависимости от того, в какую сторону преобразовывать. Судите сами: в логарифме, записанном слева, область определения следующая:

fg > 0

А вот в сумме, записанной справа, область определения уже несколько иная:

f > 0

g > 0

Данный набор требований является более жестким, чем исходный. В первом случае нас устроит вариант f < 0, g < 0 (ведь их произведение положительное, поэтому неравенство fg > 0 выполняется).

Итак, при переходе от левой конструкции к правой возникает сужение области определения. Если же сначала у нас была сумма, а мы переписываем ее в виде произведения, то происходит расширение области определения.

Другими словами, в первом случае мы могли потерять корни, а во втором — получить лишние. Это необходимо учитывать при решении реальных логарифмических уравнений.

Итак, первая задача:

[Подпись к рисунку]

Слева мы видим сумму логарифмов по одному и тому же основанию. Следовательно, эти логарифмы можно сложить:

[Подпись к рисунку]

Как видите, справа мы заменил ноль по формуле:

a = logbba

Давайте еще немного преобразуем наше уравнение:

log4 (x− 5)2 = log4 1

Перед нами каноническая форма логарифмического уравнения, мы можем зачеркнуть знак log и приравнять аргументы:

(x− 5)2 = 1

|x − 5| = 1

Обратите внимание: откуда взялся модуль? Напомню, что корень из точного квадрата равен именно модулю:

[Подпись к рисунку]

Затем решаем классическое уравнение с модулем:

|f| = g (g > 0) ⇒f = ±g

x − 5 = ±1 ⇒x1 = 5 − 1 = 4; x2 = 5 + 1 = 6

Вот два кандидат на ответ. Являются ли они решением исходного логарифмического уравнения? Нет, ни в коем случае!

Оставить все просто так и записать ответ мы не имеем права. Взгляните на тот шаг, когда мы заменяем сумму логарифмов одним логарифмом от произведения аргументов. Проблема в том, что в исходных выражениях у нас стоят функции. Следовательно, следует потребовать:

х(х − 5) > 0; (х − 5)/х > 0.

Когда же мы преобразовали произведение, получив точный квадрат, требования изменились:

(x− 5)2 > 0

Когда это требование выполняется? Да практически всегда! За исключением того случая, когда х − 5 = 0. Т.е. неравенство сведется к одной выколотой точке:

х − 5 ≠ 0 ⇒ х ≠ 5

Как видим, произошло расширение области определения, о чем мы и говорили в самом начале урока. Следовательно, могут возникнуть и лишние корни.

Как же не допустить возникновения этих лишних корней? Очень просто: смотрим на наши полученные корни и сравниваем их с областью определения исходного уравнения. Давайте посчитаем:

х (х − 5) > 0

Решать будем с помощью метода интервалов:

х (х − 5) = 0 ⇒ х = 0; х = 5

Отмечаем полученные числа на прямой. Все точки выколотые, потому что неравенство строгое. Берем любое число, больше 5 и подставляем:

[Подпись к рисунку]

На интересуют промежутки (−∞; 0) ∪ (5; ∞). Если мы отметим наши корни на отрезке, то увидим, что х = 4 нас не устраивает, потому что этот корень лежит за пределами области определения исходного логарифмического уравнения.

Возвращаемся к совокупности, вычеркиваем корень х = 4 и записываем ответ: х = 6. Это уже окончательный ответ к исходному логарифмическому уравнению. Все, задача решена.

Переходим ко второму логарифмическому уравнению:

[Подпись к рисунку]

Решаем его. Заметим, что первое слагаемое представляет собой дробь, а второе — ту же самую дробь, но перевернутую. Не пугайтесь выражения lgx— это просто десятичный логарифм, мы можем записать:

lgx = log10x

Поскольку перед нами две перевернутые дроби, предлагаю ввести новую переменную:

[Подпись к рисунку]

Следовательно, наше уравнение может быть переписано следующим образом:

t + 1/t = 2;

t + 1/t− 2 = 0;

(t2 − 2t + 1)/t = 0;

(t − 1)2/t = 0.

Как видим, в числителе дроби стоит точный квадрат. Дробь равна нулю, когда ее числитель равен нулю, а знаменатель отличен от нуля:

(t− 1)2 = 0; t ≠ 0

Решаем первое уравнение:

t− 1 = 0;

t = 1.

Это значение удовлетворяет второму требованию. Следовательно, можно утверждать, что мы полностью решили наше уравнение, но только относительно переменной t. А теперь вспоминаем, что такое t:

[Подпись к рисунку]

Получили пропорцию:

lgx = 2 lgx + 1

2 lgx− lgx = −1

lgx = −1

Приводим это уравнение к канонической форме:

lgx = lg 10−1

x = 10−1 = 0,1

В итоге мы получили единственный корень, который, по идее, является решением исходного уравнения. Однако давайте все-таки подстрахуемся и выпишем область определения исходного уравнения:

[Подпись к рисунку]

Следовательно, наш корень удовлетворяет всем требованиям. Мы нашли решение исходного логарифмического уравнения. Ответ: x = 0,1. Задача решена.

Ключевой момент в сегодняшнем уроке один: при использовании формулы перехода от произведения к сумме и обратно обязательно учитывайте, что область определения может сужаться либо расширяться в зависимости от того, в какую сторону выполняется переход.

Как понять, что происходит: сужение или расширение? Очень просто. Если раньше функции были вместе, а теперь стали по отдельности, то произошло сужение области определения (потому что требований стало больше). Если же сначала функции стояли отдельно, а теперь — вместе, то происходит расширение области определения (на произведение накладывается меньше требований, чем на отдельные множители).

С учетом данного замечания хотел бы отметить, что второе логарифмическое уравнение вообще не требует данных преобразований, т. е. мы нигде не складываем и не перемножаем аргументы. Однако здесь я хотел бы обратить ваше внимание на другой замечательный прием, который позволяет существенно упростить решение. Речь идет о замене переменной.

Однако помните, что никакие замены не освобождает нас от области определения. Именно поэтому после того были найдены все корни, мы не поленились и вернулись к исходному уравнению, чтобы найти его ОДЗ.

Часто при замене переменной возникает обидная ошибка, когда ученики находят значение t и думают, что на этом решение закончено. Нет, ни в коем случае!

Когда вы нашли значение t, необходимо вернуться к исходному уравнению и посмотреть, что именно мы обозначали этой буквой. В результате нам предстоит решить еще одно уравнение, которое, впрочем, будет значительно проще исходного.

Именно в этом состоит смысл введения новой переменной. Мы разбиваем исходное уравнение на два промежуточных, каждое из которых решается существенно проще.

Как решать «вложенные» логарифмические уравнения

Сегодня мы продолжаем изучать логарифмические уравнения и разберем конструкции, когда один логарифм стоит под знаком другого логарифма. Оба уравнения мы будем решать с помощью канонической формы.

Сегодня мы продолжаем изучать логарифмические уравнения и разберем конструкции, когда один логарифм стоит под знаком другого. Оба уравнения мы будем решать с помощью канонической формы. Напомню, если у нас есть простейшее логарифмическое уравнение вида logaf(x) = b, то для решения такого уравнения мы выполняем следующие шаги. В первую очередь, нам нужно заменить число b:

b = logaab

Заметьте: ab— это аргумент. Точно так же в исходном уравнении аргументом является функция f(x). Затем мы переписываем уравнение и получаем вот такую конструкцию:

logaf(x) = logaab

Уже затем мы можем выполнить третий шаг — избавится от знака логарифма и просто записать:

f(x) = ab

В результате мы получим новое уравнение. При этом никаких ограничений на функцию f(x) не накладывается. Например, на ее месте также может стоять логарифмическая функция. И тогда мы вновь получим логарифмическое уравнение, которое снова сведем к простейшему и решим через каноническую форму.

Впрочем, хватит лирики. Давайте решим настоящую задачу. Итак, задача № 1:

log2 (1 + 3 log2x) = 2

Как видим, перед нами простейшее логарифмическое уравнение. В роли f(x) выступает конструкция 1 + 3 log2x, а в роли числа b выступает число 2 (в роли aтакже выступает двойка). Давайте перепишем эту двойку следующим образом:

2 = log2 22

Важно понимать, что первые две двойки пришли к нам из основания логарифма, т. е. если бы в исходном уравнении стояла 5, то мы бы получили, что 2 = log5 52. В общем, основание зависит исключительно от логарифма, который изначально дан в задаче. И в нашем случае это число 2.

Итак, переписываем наше логарифмическое уравнение с учетом того, что двойка, которая стоит справа, на самом деле тоже является логарифмом. Получим:

log2 (1 + 3 log2x) = log2 4

Переходим к последнему шагу нашей схемы — избавляемся от канонической формы. Можно сказать, просто зачеркиваем знаки log. Однако с точки зрения математики «зачеркнуть log» невозможно — правильнее сказать, что мы просто просто приравниваем аргументы:

1 + 3 log2x = 4

Отсюда легко находится 3 log2x:

3 log2x = 3

log2x = 1

Мы вновь получили простейшее логарифмическое уравнение, давайте снова приведем его к канонической форме. Для этого нам необходимо провести следующие изменения:

1 = log2 21 = log2 2

Почему в основании именно двойка? Потому что в нашем каноническом уравнении слева стоит логарифм именно по основанию 2. Переписываем задачу с учетом этого факта:

log2x = log2 2

Снова избавляемся от знака логарифма, т. е. просто приравниваем аргументы. Мы вправе это сделать, потому что основания одинаковые, и больше никаких дополнительных действий ни справа, ни слева не выполнялось:

х = 2

Вот и все! Задача решена. Мы нашли решение логарифмического уравнения.

Обратите внимание! Хотя переменная х и стоит в аргументе (т. е. возникают требования к области определения), мы никаких дополнительных требований предъявлять не будем.

Как я уже говорил выше, данная проверка является избыточной, если переменная встречается лишь в одном аргументе лишь одного логарифма. В нашем случае х действительно стоит лишь в аргументе и лишь под одним знаком log. Следовательно, никаких дополнительных проверок выполнять не требуется.

Тем не менее, если вы не доверяете данному методу, то легко можете убедиться, что х = 2 действительно является корнем. Достаточно подставить это число в исходное уравнение.

Давайте перейдем ко второму уравнению, оно чуть интересней:

log2 (log1/2 (2x− 1) + log2 4) = 1

Если обозначить выражение внутри большого логарифма функцией f(x), получим простейшее логарифмическое уравнение, с которого мы начинали сегодняшний видеоурок. Следовательно, можно применить каноническую форму, для чего придется представить единицу в виде log2 21 = log2 2.

Переписываем наше большое уравнение:

log2 (log1/2 (2x − 1) + log2 4) = log2 2

Изваляемся от знака логарифма, приравнивая аргументы. Мы вправе это сделать, потому что и слева, и справа основания одинаковые. Кроме того, заметим, что log2 4 = 2:

log1/2 (2x− 1) + 2 = 2

log1/2 (2x− 1) = 0

Перед нами снова простейшее логарифмическое уравнение вида logaf(x) = b. Переходим к канонической форме, т. е. представляем ноль в виде log1/2 (1/2)0 = log1/2 1.

Переписываем наше уравнение и избавляемся от знака log, приравнивая аргументы:

log1/2 (2x− 1) = log1/2 1

2x − 1 = 1

2х = 2

х = 1

Опять же мы сразу получили ответ. Никаких дополнительных проверок не требуется, потому что в исходном уравнении лишь один логарифм содержит функцию в аргументе.

Следовательно, никаких дополнительных проверок выполнять не требуется. Мы можем смело утверждать, что х = 1 является единственным корнем данного уравнения.

А вот если бы во втором логарифме вместо четверки стояла бы какая-то функция от х (либо 2х стояло бы не в аргументе, а в основании) — вот тогда потребовалось бы проверять область определения. Иначе велик шанс нарваться на лишние корни.

Откуда возникают такие лишние корни? Этот момент нужно очень четко понимать. Взгляните на исходные уравнения: везде функция х стоит под знаком логарифма. Следовательно, поскольку мы записали log2x, то автоматически выставляем требование х > 0. Иначе данная запись просто не имеет смысла.

Однако по мере решения логарифмического уравнения мы избавляемся от всех знаков log и получаем простенькие конструкции. Здесь уже никаких ограничений не выставляется, потому что линейная функция определена при любом значении х.

Именно эта проблема, когда итоговая функция определена везде и всегда, а исходная — отнюдь не везде и не всегда, и является причиной, по которой в решении логарифмических уравнениях очень часто возникают лишние корни.

Но повторю еще раз: такое происходить лишь в ситуации, когда функция стоит либо в нескольких логарифмах, либо в основании одного из них. В тех задачах, которые мы рассматриваем сегодня, проблем с расширением области определения в принципе не существует.

Случаи разного основания

Этот урок посвящен уже более сложным конструкциям. Логарифмы в сегодняшних уравнениях уже не будут решаться «напролом» — сначала потребуется выполнить некоторые преобразования.

Начинаем решение логарифмических уравнений с совершенно разными основаниями, которые не являются точными степенями друг друга. Пусть вас не пугают подобные задачи — решаются они ничуть не сложнее, чем самые простые конструкции, которые мы разбирали выше.

Но прежде, чем переходить непосредственно к задачам, напомню о формуле решения простейших логарифмических уравнений с помощью канонической формы. Рассмотрим задачу вот такого вида:

logaf(x) = b

Важно, что функция f(x) является именно функцией, а в роли чисел а и b должны выступать именно числа (без всяких переменных x). Разумеется, буквально через минуту мы рассмотрим и такие случаи, когда вместо переменных а и b стоят функции, но сейчас не об этом.

Как мы помним, число bнужно заменить логарифмом по тому же самому основанию а, которое стоит слева. Это делается очень просто:

b = logaab

Разумеется, под словом «любое число b» и «любое число а» подразумеваются такие значения, которые удовлетворяют области определения. В частности, в данном уравнении речь идет лишь основание a > 0 и a≠ 1.

Однако данное требование выполняется автоматически, потому что в исходной задаче уже присутствует логарифм по основанию а — оно заведомо будет больше 0 и не равно 1. Поэтому продолжаем решение логарифмического уравнения:

logaf(x) = logaab

Подобная запись называется канонической формой. Ее удобство состоит в том, что мы сразу можем избавиться от знака log, приравняв аргументы:

f(x) = ab

Именно этот прием мы сейчас будем использовать для решения логарифмических уравнений с переменным основанием. Итак, поехали!

log2 (x2 + 4x + 11) = log0,5 0,125

Что дальше? Кто-то сейчас скажет, что нужно вычислить правый логарифм, либо свести их к одному основанию, либо что-то еще. И действительно, сейчас нужно привести оба основания к одному виду — либо 2, либо 0,5. Но давайте раз и навсегда усвоим следующее правило:

Если в логарифмическом уравнении присутствуют десятичные дроби, обязательно переведите эти дроби из десятичной записи в обычную. Такое преобразование может существенно упростить решение.

Подобный переход нужно выполнять сразу, еще до выполнения каких-либо действий и преобразований. Давайте посмотрим:

log2 (x2 + 4x + 11) = log1/2 1/8

Что нам дает такая запись? Мы можем 1/2 и 1/8 представить как степень с отрицательным показателем:

[Подпись к рисунку]

Перед нами каноническая форма. Приравниваем аргументы и получаем классическое квадратное уравнение:

x2 + 4x + 11 = 8

x2 + 4x + 3 = 0

Перед нами приведенное квадратное уравнение, которое легко решается с помощью формул Виета. Подобные выкладки в старших классах вы должны видеть буквально устно:

(х + 3)(х + 1) = 0

x1 = −3

x2 = −1

Вот и все! Исходное логарифмическое уравнение решено. Мы получили два корня.

Напомню, что определять область определения в данном случае не требуется, поскольку функция с переменной х присутствует лишь в одном аргументе. Поэтому область определения выполняется автоматически.

Итак, первое уравнение решено. Переходим ко второму:

log0,5 (5x2 + 9x + 2) = log3 1/9

Как и в прошлый раз, рекомендую избавиться от десятичных дробей:

log1/2 (5x2 + 9x + 2) = log3 9−1

А теперь заметим, что аргумент первого логарифма тоже можно записать в виде степени с отрицательным показателем: 1/2 = 2−1. Затем можно вынести степени с обеих сторон уравнения и разделить все на −1:

[Подпись к рисунку]

И вот сейчас мы выполнили очень важный шаг в решении логарифмического уравнения. Возможно, кто-то что-то не заметил, поэтому давайте я поясню.

Взгляните на наше уравнение: и слева, и справа стоит знак log, но слева стоит логарифм по основанию 2, а справа стоит логарифм по основанию 3. Тройка не является целой степенью двойки и, наоборот: нельзя записать, что 2 — это 3 в целой степени.

Следовательно, это логарифмы с разными основаниями, которые не сводятся друг к другу простым вынесением степеней. Единственный путь решения таких задач — избавиться от одного из этих логарифмов. В данном случае, поскольку мы пока рассматриваем довольно простые задачи, логарифм справа просто сосчитался, и мы получили простейшее уравнение — именно такое, о котором мы говорили в самом начале сегодняшнего урока.

Давайте представим число 2, которое стоит справа в виде log2 22 = log2 4. А затем избавимся от знака логарифма, после чего у нас остается просто квадратное уравнение:

log2 (5x2 + 9x + 2) = log2 4

5x2 + 9x + 2 = 4

5x2 + 9x− 2 = 0

Перед нами обычное квадратное уравнение, однако оно не является приведенным, потому что коэффициент при x2 отличен от единицы. Следовательно, решать мы его будем с помощью дискриминанта:

D = 81 − 4 5 (−2) = 81 + 40 = 121

x1 = (−9 + 11)/10 = 2/10 = 1/5

x2 = (−9 − 11)/10 = −2

Вот и все! Мы нашли оба корня, а значит, получили решение исходного логарифмического уравнения. Ведь в исходной задачи функция с переменной х присутствует лишь в одном аргументе. Следовательно, никаких дополнительных проверок на область определения не требуется — оба корня, которые мы нашли, заведомо отвечают всем возможным ограничениям.

На этом можно было бы закончить сегодняшний видеоурок, но в заключении я хотел бы сказать еще раз: обязательно переводите все десятичные дроби в обычные при решении логарифмических уравнений. В большинстве случаев это существенно упрощает их решение.

Редко, очень редко попадаются задачи, в которых избавление от десятичных дробей лишь усложняет выкладки. Однако в таких уравнениях, как правило, изначально видно, что избавляться от десятичных дробей не надо.

В большинстве остальных случаев (особенно если вы только начинаете тренироваться в решении логарифмических уравнений) смело избавляйтесь от десятичных дробей и переводите их в обычные. Потому что практика показывает, что таким образом вы значительно упростите последующее решение и выкладки.

Тонкости и хитрости решения

Сегодня мы переходим к более сложным задачам и будем решать логарифмическое уравнение, в основании которого стоит не число, а функция.

И пусть даже эта функция линейна — в схему решения придется внести небольшие изменения, смысл которых сводится к дополнительным требованиям, накладываемым на область определения логарифма.

Сложные задачи

Этот урок будет довольно длинным. В нем мы разберем два довольно серьезных логарифмических уравнения, при решении которых многие ученики допускают ошибки. За свою практику работы репетитором по математике я постоянно сталкивался с двумя видами ошибок:

  1. Возникновение лишних корней из-за расширения области определения логарифмов. Чтобы не допускать такие обидные ошибки, просто внимательно следите за каждым преобразованием;
  2. Потери корней из-за того, что ученик забыл рассмотреть некоторые «тонкие» случаи — именно на таких ситуациях мы сегодня и сосредоточимся.

Это последний урок, посвященный логарифмическим уравнениям. Он будет длинным, мы разберем сложные логарифмические уравнения. Устраивайтесь поудобней, заварите себе чай, и мы начинаем.

Первое уравнение выглядит вполне стандартно:

logx + 1 (x − 0,5) = logx − 0,5 (x + 1)

Сразу заметим, что оба логарифма являются перевернутыми копиями друг друга. Вспоминаем замечательную формулу:

logab = 1/logba

Однако у этой формулы есть ряд ограничений, которые возникают в том случае, если вместо чисел а и b стоят функции от переменной х:

b > 0

1 ≠ a > 0

Эти требования накладываются на основание логарифма. С другой стороны, в дроби от нас требуется 1 ≠ a > 0, поскольку не только переменная a стоит в аргументе логарифма ( следовательно, a > 0), но и сам логарифм находится в знаменателе дроби. Но logb 1 = 0, а знаменатель должен быть отличным от нуля, поэтому a ≠ 1.

Итак, ограничения на переменную a сохраняется. Но что происходит с переменной b? С одной стороны, из основания следует b> 0, с другой — переменная b≠ 1, потому что основание логарифма должно быть отлично от 1. Итого из правой части формулы следует, что 1 ≠ b > 0.

Но вот беда: второе требование (b ≠ 1) отсутствует в первом неравенстве, посвященном левому логарифму. Другими словами, при выполнении данного преобразования мы должны отдельно проверить, что аргумент bотличен от единицы!

Вот давайте и проверим. Применим нашу формулу:

[Подпись к рисунку]

А теперь, прежде чем идти дальше, выпишем все требования области определения, накладываемые на исходную задачу:

1 ≠ х − 0,5 > 0; 1 ≠ х + 1 > 0

Вот мы и получили, что уже из исходного логарифмического уравнения следует, что и а, и b должны быть больше 0 и не равны 1. Значит, мы спокойно можем переворачивать логарифмическое уравнение:

Предлагаю ввести новую переменную:

logx + 1 (x − 0,5) = t

В этом случае наша конструкция перепишется следующим образом:

(t2− 1)/t = 0

Заметим, что в числителе у нас стоит разность квадратов. Раскрываем разность квадратов по формуле сокращенного умножения:

(t − 1)(t + 1)/t = 0

Дробь равна нулю, когда ее числитель равен нулю, а знаменатель отличен от нуля. Но в числителе стоит произведение, поэтому приравниваем к нулю каждый множитель:

t1 = 1;

t2 = −1;

t ≠ 0.

Как видим, оба значения переменной tнас устраивают. Однако на этом решение не заканчивается, ведь нам требуется найти не t, а значение x. Возвращаемся к логарифму и получаем:

logx + 1 (x − 0,5) = 1;

logx + 1 (x − 0,5) = −1.

Давайте приведем каждое из этих уравнений к канонической форме:

logx + 1 (x − 0,5) = logx + 1 (x + 1)1

logx + 1 (x − 0,5) = logx + 1 (x + 1)−1

Избавляемся от знака логарифма в первом случае и приравниваем аргументы:

х − 0,5 = х + 1;

х − х = 1 + 0,5;

0 = 1,5.

Такое уравнение не имеет корней, следовательно, первое логарифмическое уравнение также не имеет корней. А вот со вторым уравнением все намного интересней:

(х − 0,5)/1 = 1/(х + 1)

Решаем пропорцию — получим:

(х − 0,5)(х + 1) = 1

Напоминаю, что при решении логарифмических уравнений гораздо удобней приводить все десятичные дроби обычные, поэтому давайте перепишем наше уравнение следующим образом:

(х − 1/2)(х + 1) = 1;

x2 + x− 1/2x− 1/2 − 1 = 0;

x2 + 1/2x− 3/2 = 0.

Перед нами приведенное квадратное уравнение, оно легко решается по формулам Виета:

(х + 3/2) (х − 1) = 0;

x1 = −1,5;

x2 = 1.

Получили два корня — они являются кандидатами на решение исходного логарифмического уравнения. Для того чтобы понять, какие корни действительно пойдут в ответ, давайте вернемся к исходной задаче. Сейчас мы проверим каждый из наших корней на предмет соответствия области определения:

1,5 ≠ х > 0,5; 0 ≠ х > −1.

Эти требования равносильны двойному неравенству:

1 ≠ х > 0,5

Отсюда сразу видим, что корень х = −1,5 нас не устраивает, а вот х = 1 вполне устраивает. Поэтому х = 1 — окончательное решение логарифмического уравнения.

Переходим ко второй задаче:

logx 25 + log125x 5 = log25x 625

На первый взгляд может показаться, что у всех логарифмов разные основания и разные аргументы. Что делать с такими конструкциями? В первую очередь заметим, что числа 25, 5 и 625 — это степени 5:

25 = 52; 625 = 54

А теперь воспользуемся замечательным свойством логарифма. Дело в том, что можно выносить степени из аргумента в виде множителей:

logabn = n ∙ logab

На данное преобразование также накладываются ограничения в том случае, когда на месте bстоит функция. Но у нас b— это просто число, и никаких дополнительных ограничений не возникает. Перепишем наше уравнение:

2 ∙ logx 5 + log125x 5 = 4 ∙ log25x 5

Получили уравнение с тремя слагаемыми, содержащими знак log. Причем аргументы всех трех логарифмов равны.

Самое время перевернуть логарифмы, чтобы привести их к одному основанию — 5. Поскольку в роли переменной b выступает константа, никаких изменений области определения не возникает. Просто переписываем:

[Подпись к рисунку]

Как и предполагалось, в знаменателе «вылезли» одни и те же логарифмы. Предлагаю выполнить замену переменной:

log5x = t

В этом случае наше уравнение будет переписано следующим образом:

Выпишем числитель и раскроем скобки:

2 (t + 3) (t + 2) + t (t + 2) − 4t (t + 3) = 2 (t2 + 5t + 6) + t2 + 2t − 4t2 − 12t = 2t2 + 10t + 12 + t2 + 2t − 4t2 − 12t = −t2 + 12

Возвращаемся к нашей дроби. Числитель должен быть равен нулю:

[Подпись к рисунку]

А знаменатель — отличен от нуля:

t ≠ 0; t ≠ −3; t ≠ −2

Последние требования выполняются автоматически, поскольку все они «завязаны» на целые числа, а все ответы — иррациональные.

Итак, дробно-рациональное уравнение решено, значения переменной t найдены. Возвращаемся к решению логарифмического уравнения и вспоминаем, что такое t:

[Подпись к рисунку]

Приводим это уравнение к канонической форме, получим число с иррациональной степенью. Пусть это вас не смущает — даже такие аргументы можно приравнять:

[Подпись к рисунку]

У нас получилось два корня. Точнее, два кандидата в ответы — проверим их на соответствие области определения. Поскольку в основании логарифма стоит переменная х, потребуем следующее:

1 ≠ х > 0;

С тем же успехом утверждаем, что х ≠ 1/125, иначе основание второго логарифма обратится в единицу. Наконец, х ≠ 1/25 для третьего логарифма.

Итого мы получили четыре ограничения:

1 ≠ х > 0; х ≠ 1/125; х ≠ 1/25

А теперь вопрос: удовлетворяют ли наши корни указанным требованиям? Конечно удовлетворяют! Потому что 5 в любой степени будет больше нуля, и требование х > 0 выполняется автоматически.

С другой стороны, 1 = 50, 1/25 = 5−2, 1/125 = 5−3, а это значит, что данные ограничения для наших корней (у которых, напомню, в показателе стоит иррациональное число) также выполнены, и оба ответа являются решениями задачи.

Итак, мы получили окончательный ответ. Ключевых моментов в данной задаче два:

  1. Будьте внимательны при перевороте логарифма, когда аргумент и основание меняются местами. Подобные преобразования накладывают лишние ограничения на область определения.
  2. Не бойтесь преобразовывать логарифмы: их можно не только переворачивать, но и раскрывать по формуле суммы и вообще менять по любым формулам, которые вы изучали при решении логарифмических выражений. Однако при этом всегда помните: некоторые преобразования расширяют область определения, а некоторые — сужают.

В общем, при решении сложных логарифмических уравнений обязательно выписывайте исходную область определения. А у меня на сегодня все.:)

Смотрите также:

  1. Квадратные уравнения относительно логарифма
  2. Преобразование логарифмических неравенств с одинаковым основанием
  3. Локальная теорема Муавра — Лапласа
  4. Пробный ЕГЭ-2011 по математике, вариант №3
  5. Специфика работы с логарифмами в задаче B15
  6. Симметрия корней и оптимизация ответов в тригонометрии

www.berdov.com

Что такое логарифм

11 июля 2011

Логарифмы всегда считались сложной темой в школьном курсе математики. Существует много разных определений логарифма, но большинство учебников почему-то используют самые сложные и неудачные из них.

Мы же определим логарифм просто и наглядно. Для этого составим таблицу:

Итак, перед нами степени двойки. Если взять число из нижней строчки, то можно легко найти степень, в которую придется возвести двойку, чтобы получилось это число. Например, чтобы получить 16, надо два возвести в четвертую степень. А чтобы получить 64, надо два возвести в шестую степень. Это видно из таблицы.

А теперь — собственно, определение логарифма:

Логарифм по основанию a от аргумента x — это степень, в которую надо возвести число a, чтобы получить число x.

Обозначение: logax = b, где a — основание, x — аргумент, b — собственно, чему равен логарифм.

Например, 23 = 8 ⇒log2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 23 = 8). С тем же успехом log2 64 = 6, поскольку 26 = 64.

Операцию нахождения логарифма числа по заданному основанию называют логарифмированием. Итак, дополним нашу таблицу новой строкой:

212223 242526
248163264
log2 2 = 1log2 4 = 2 log2 8 = 3log2 16 = 4 log2 32 = 5log2 64 = 6

К сожалению, далеко не все логарифмы считаются так легко. Например, попробуйте найти log2 5. Числа 5 нет в таблице, но логика подсказывает, что логарифм будет лежать где-то на отрезке [2; 3]. Потому что 22 < 5 < 23, а чем больше степень двойки, тем больше получится число.

Если взять калькулятор и посчитать, чему равны такие логарифмы, то получатся очень длинные числа. Взгляните сами: log2 5 = 2,32192809... log3 8 = 1,89278926... log5 100 = 2,86135311...

Такие числа называются иррациональными: цифры после запятой можно писать до бесконечности, и они никогда не повторяются. Если логарифм получается иррациональным, его лучше так и оставить: log2 5, log3 8, log5 100.

Важно понимать, что логарифм — это выражение с двумя переменными (основание и аргумент). Многие на первых порах путают, где находится основание, а где — аргумент. Чтобы избежать досадных недоразумений, просто взгляните на картинку:

Что такое логарифм

Перед нами — не что иное как определение логарифма. Вспомните: логарифм — это степень, в которую надо возвести основание, чтобы получить аргумент. Именно основание возводится в степень — на картинке оно выделено красным. Получается, что основание всегда находится внизу! Это замечательное правило я рассказываю своим ученикам на первом же занятии — и никакой путаницы не возникает.

Как считать логарифмы

С определением разобрались — осталось научиться считать логарифмы, т.е. избавляться от знака «log». Для начала отметим, что из определения следует два важных факта:

  1. Аргумент и основание всегда должны быть больше нуля. Это следует из определения степени рациональным показателем, к которому сводится определение логарифма.
  2. Основание должно быть отличным от единицы, поскольку единица в любой степени все равно остается единицей. Из-за этого вопрос «в какую степень надо возвести единицу, чтобы получить двойку» лишен смысла. Нет такой степени!

Такие ограничения называются областью допустимых значений (ОДЗ). Получается, что ОДЗ логарифма выглядит так: logax = b ⇒x > 0, a > 0, a ≠ 1.

Заметьте, что никаких ограничений на число b (значение логарифма) не накладывается. Например, логарифм вполне может быть отрицательным: log2 0,5 = −1, т.к. 0,5 = 2−1.

Впрочем, сейчас мы рассматриваем лишь числовые выражения, где знать ОДЗ логарифма не требуется. Все ограничения уже учтены составителями задач. Но когда пойдут логарифмические уравнения и неравенства, требования ОДЗ станут обязательными. Ведь в основании и аргументе могут стоять весьма неслабые конструкции, которые совсем необязательно соответствуют приведенным выше ограничениям.

Теперь рассмотрим общую схему вычисления логарифмов. Она состоит из трех шагов:

  1. Представить основание a и аргумент x в виде степени с минимально возможным основанием, большим единицы. Попутно лучше избавиться от десятичных дробей;
  2. Решить относительно переменной b уравнение: x = ab;
  3. Полученное число b будет ответом.

Вот и все! Если логарифм окажется иррациональным, это будет видно уже на первом шаге. Требование, чтобы основание было больше единицы, весьма актуально: это снижает вероятность ошибки и значительно упрощает выкладки. Аналогично с десятичными дробями: если сразу перевести их в обычные, ошибок будет в разы меньше.

Посмотрим, как работает эта схема на конкретных примерах:

Задача. Вычислите логарифм: log5 25

  1. Представим основание и аргумент как степень пятерки: 5 = 51; 25 = 52;
  2. Составим и решим уравнение:log5 25 = b ⇒(51)b = 52 ⇒5b = 52 ⇒ b = 2;

  3. Получили ответ: 2.

Задача. Вычислите логарифм:

Пример логарифма
  1. Представим основание и аргумент как степень тройки: 3 = 31; 1/81 = 81−1= (34)−1 = 3−4;
  2. Составим и решим уравнение:

    Как считать логарифм
  3. Получили ответ: −4.

Задача. Вычислите логарифм: log4 64

  1. Представим основание и аргумент как степень двойки: 4 = 22; 64 = 26;
  2. Составим и решим уравнение:log4 64 = b ⇒(22)b = 26 ⇒22b = 26 ⇒2b = 6 ⇒ b = 3;
  3. Получили ответ: 3.

Задача. Вычислите логарифм: log16 1

  1. Представим основание и аргумент как степень двойки: 16 = 24; 1 = 20;
  2. Составим и решим уравнение:log16 1 = b ⇒(24)b = 20 ⇒24b = 20 ⇒4b = 0 ⇒ b = 0;
  3. Получили ответ: 0.

Задача. Вычислите логарифм: log7 14

  1. Представим основание и аргумент как степень семерки: 7 = 71; 14 в виде степени семерки не представляется, поскольку 71 < 14 < 72;
  2. Из предыдущего пункта следует, что логарифм не считается;
  3. Ответ — без изменений: log7 14.

Небольшое замечание к последнему примеру. Как убедиться, что число не является точной степенью другого числа? Очень просто — достаточно разложить его на простые множители. Если в разложении есть хотя бы два различных множителя, число не является точной степенью.

Задача. Выясните, являются ли точными степенями числа: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 23 — точная степень, т.к. множитель всего один; 48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 24 — не является точной степенью, поскольку есть два множителя: 3 и 2; 81 = 9 · 9 = 3 · 3 · 3 · 3 = 34 — точная степень; 35 = 7 · 5 — снова не является точной степенью; 14 = 7 · 2 — опять не точная степень;

Заметим также, что сами простые числа всегда являются точными степенями самих себя.

Десятичный логарифм

Некоторые логарифмы встречаются настолько часто, что имеют специальное название и обозначение.

Десятичный логарифм от аргумента x — это логарифм по основанию 10, т.е. степень, в которую надо возвести число 10, чтобы получить число x. Обозначение: lg x.

Например, lg 10 = 1; lg 100 = 2; lg 1000 = 3 — и т.д.

Отныне, когда в учебнике встречается фраза типа «Найдите lg 0,01», знайте: это не опечатка. Это десятичный логарифм. Впрочем, если вам непривычно такое обозначение, его всегда можно переписать: lg x = log10x

Все, что верно для обычных логарифмов, верно и для десятичных.

Натуральный логарифм

Существует еще один логарифм, который имеет собственное обозначение. В некотором смысле, он даже более важен, чем десятичный. Речь идет о натуральном логарифме.

Натуральный логарифм от аргумента x — это логарифм по основанию e, т.е. степень, в которую надо возвести число e, чтобы получить число x. Обозначение: ln x.

Многие спросят: что еще за число e? Это иррациональное число, его точное значение найти и записать невозможно. Приведу лишь первые его цифры:e = 2,718281828459...

Не будем углубляться, что это за число и зачем нужно. Просто помните, что e — основание натурального логарифма: ln x = logex

Таким образом, ln e = 1; ln e2 = 2; ln e16 = 16 — и т.д. С другой стороны, ln 2 — иррациональное число. Вообще, натуральный логарифм любого рационального числа иррационален. Кроме, разумеется, единицы: ln 1 = 0.

Для натуральных логарифмов справедливы все правила, которые верны для обычных логарифмов.

Смотрите также:

  1. Тест к параграфу «Что такое логарифм» (легкий)
  2. Тест к уроку «Что такое логарифм» (средний)
  3. Как сдать ЕГЭ по математике
  4. Пробный ЕГЭ 2012 от 7 декабря. Вариант 2 (без логарифмов)
  5. C2: расстояние между двумя прямыми
  6. Формула простого процента: как найти исходное значение

www.berdov.com