Как найти первоначальную температуру газа. Как найти температуру смеси формула


Смешивание жидкостей | Температура и объем смеси – S a m N a g n a l.r u

Температура и объем смеси двух жидкостей

Предположим, что мы собрались смешать две жидкости разного объема и температуры. Какими же будут температура и объем смеси? Наш калькулятор поможет ответить на этот вопрос.

Для расчета заполняем окна ниже и нажимаем «Рассчитать». Я предлагаю вводить температуру в °С, а объем — в мл. Хотя при желании мы можем использовать и другие единицы измерений, главное — не использовать их вперемешку. Например, если ввели первый объем в литрах, то и второй вводим в литрах, и в результате тоже получаем литры.

Когда можно применять данный калькулятор

Использовать этот калькулятор мы будем только при смешивании безалкогольных жидкостей.

Температура и объем смеси из этилового спирта и воды с помощью данного калькулятора не вычисляются. Это связано с тем, что растворение этилового спирта в воде всегда происходит с выделением тепла, то есть температура смеси после соединения этилового спирта и воды будет заведомо больше расчетной.

Но это не значит, что данный калькулятор бесполезен в самогоноварении. Например, он будет нам хорошим помощником в приготовлении браги. Предположим, при подготовке браги нам нужно смешать воду комнатной температуры и сироп, нагретый для лучшего растворении сахара в воде. Мы знаем, что дрожжи нельзя вводить в смесь, температура которой превышает 30°С, иначе дрожжевые грибы могут погибнуть. Вводя в калькулятор объем и температуру смешиваемых компонентов, мы можем подобрать температуру, до которой следует нагревать сироп, чтобы температура смеси из воды и сиропа не превысила отметку в 30°С.

Так же на нашем сайте представлены другие калькуляторы:

Смешивание спиртов | Крепость и объем — сервис, позволяющий вычислить процент содержания спирта в смеси, состоящей из двух спиртов разной крепости и объема.

Разбавление спирта | Необходимый объем воды — сервис, позволяющий рассчитать, какой объем воды потребуется для разведения спирта до нужной крепости.

Спиртометр | Корректировка показаний спиртометра — сервис, позволяющий скорректировать показания спиртометра в зависимости от температуры раствора спирта.

Сколько самогона получится | Дробная перегонка спирта-сырца — сервис, позволяющий узнать, сколько самогона и сколько головных фракций получится при дробной перегонке спирта-сырца.

Объем сиропа: растворение сахара в воде — сервис для расчета объема сиропа, исходя из используемого объема воды и веса растворяемого сахара.

samnagnal.ru

Как найти температуру смеси

Практическое значение имеет определение температуры смеси двух жидкостей. В этом случае рассматривается два варианта. Первый – определение температуры смеси однородных жидкостей. Для этого найдите их массы и начальные температуры, а затем рассчитайте температуру смеси. Второй – смесь разных жидкостей. Тогда для определения ее температуры найдите еще и их удельную теплоемкость.

Вам понадобится

  • термометр, весы или мерный цилиндр, таблица удельных теплоемкостей веществ.

Инструкция

  • Температура смеси однородных жидкостейС помощью весов определите массы смешиваемых жидкостей в килограммах. В случае с водой (наиболее распространенном) можно измерить ее объем в литрах при помощи мерного цилиндра. Количество литров численно равно массе воды в килограммах. Измерьте температуру каждой жидкости в градусах Цельсия. Одна из них будет иметь большую температуру, а другая меньшую. Первая будет отдавать тепло, а другая - забирать. По окончании процесса их температуры сравняются.
  • Найдите произведение массы более теплой жидкости на ее температуру и сложите ее с произведением массы более холодной жидкости на ее температуру. Полученный результат поделите на сумму масс жидкостей (t=(m1•t1+m2•t2)/(m1+m2)). Результатом будет температура смеси однородных жидкостей. При практическом смешивании нужно максимально нейтрализовать влияние внешних факторов, поэтому смешивание лучше производить в калориметре.
  • Температура смеси различных жидкостейПеред смешиванием обязательно убедитесь, что оно возможно практически. Например, смешать воду и масло не удастся - масло окажется на поверхности воды. Найдите массы и начальные температуры жидкостей по методике, описанной в предыдущем пункте. В таблице удельных теплоемкостей найдите эти величины для жидкостей, которые смешиваете.
  • Далее этого произведите следующую последовательность математических действий:- найдите произведение удельной теплоемкости жидкости с большей начальной температурой на ее массу и температуру;- найдите произведение удельной теплоемкости с меньшей начальной температурой на ее массу и температуру;- найдите сумму чисел, полученных в пунктах 1 и 2;- найдите произведение удельной теплоемкости жидкости с большей начальной температурой на значение этой температуры;- найдите произведение удельной теплоемкости жидкости с меньшей начальной температурой на значение этой температуры;- найдите сумму чисел, полученных в пунктах 4 и 5;- поделите число, получившееся в пункте 3 на число, получившееся в пункте 6. t=(с1•m1•t1+с2•m2•t2)/(с1•m1+с2•m2).

completerepair.ru

Температура и теплота | Физика

В старину на Руси сведения о погоде записывали так: «1657 год, Генваря, 30-го дня, пяток. День был до обеда холоден и ведрен, а после обеда оттепелен, в ночи было ветрено». В то время еще не было термометров. Если требовалось отметить температуру воздуха в зимний день, то записывали так: «Мороз мал» или «Мороз лютый».

Первые термометры появились лишь в начале XVII века. Как не похожи они были на наши, современные! Это можно видеть на рисунке 107, на котором изображен первый термометр Галилея, и рисунке 108, на котором изображен первый медицинский термометр. Но и после появления первых термометров еще не было введено понятие о градусе, не установлена начальная точка отсчета температуры.

Первые термометры и измерение температуры

Первое представление о температуре не было достаточно четким, и не всегда понятие «температура» отличали от понятия, получившего название «количество теплоты».

Перенесемся мысленно более чем на два столетия назад в конференц-зал Петербургской Академии наук. 14 декабря 1744 года. На дворе изрядный мороз, оконные стекла покрыты толстым слоем ледяных узоров, но в зале тепло и многолюдно. Присутствует на заседании и Михаил Васильевич Ломоносов. Его коллега и друг, профессор экспериментальной физики Георг Рихман читает доклад на тему «Размышление о количестве теплоты, которое должно получаться при смешении жидкостей, имеющих определенные градусы теплоты». Доклад начинался так: «Милостивые Государи! После того как 12 октября 1744 года в академической конференции было прочитано рассуждение преславного Крафта о тепле и холоде, я исследовал остроумно найденную им формулу для количества или градуса теплоты в жидких смесях...»

Рихман имел в виду найденную Крафтом опытным путем формулу для определения температуры смеси двух порций воды:

Определение температуры смеси по формуле Крафта

где a и b — массы этих порций, m и n — их температуры (рис. 109).

Рихман показал, что формула Крафта пригодна лишь для небольших порций воды, в противном случае отклонения фактической температуры смеси от расчетной становятся слишком значительными. Рихман предложил свою формулу для определения температуры смеси однородных жидкостей, которая затем перешла в учебники физики под названием «формулы Рихмана»:

Определение температуры смеси по формуле Рихмана

Следует отметить, что Рихман в отличие от Крафта решил задачу не для двух порций воды, а для любого числа их. Мы привели сокращенную формулу только для двух порций воды.

Однако Рихман согласно господствовавшей в то время теории теплорода считал, что теплота есть некоторая материальная сущность, «тепловая материя», которая равномерно распределяется в данном объеме.

Рихман не разграничивал понятия «температура» и «количество теплоты». Это видно из приведенного вступления к его докладу. И температуру, и количество теплоты он обозначал одинаково: Calor (доклад был написан и зачитывался по-латыни). Не знал Рихман и единицы для измерения количества теплоты. И все же именно работа Рихмана положила начало точным количественным расчетам в области теплотехники. Но чтобы перейти к этим расчетам, надо было сделать еще один шаг. Этот шаг был сделан английским химиком Блэком (1727-1799).

История науки мало знает таких опытов, как следующий опыт Блэка. Согласно формуле Рихмана температура смеси двух равных порций одного и того же вещества, взятых при различных температурах, должна равняться средней арифметической между двумя данными температурами. Если температура равных порций воды до смешения были 80°C и 0°C, то температура смеси должна быть (80°C + 0°C) / 2 = 40°C, что и наблюдалось на опыте. Но когда Блэк смешал порцию горячей воды при 80°C с равной порцией льда при 0°C (рис. 110), он, к огромному своему удивлению, увидел, что температура смеси (после таяния льда) получилась не 40°C, а 0°C! «Тающий лед, - писал Блэк, - принимает в себя много тепла, но все действие последнего ограничивается только превращением льда в воду, которая нисколько не нагревается против бывшей температуры льда. При этом тепло как бы поглощается водой или скрывается в ней и термометр не обнаруживает его присутствия». Процесс плавления льда казался химику Блэку своего рода химической реакцией: лед + теплород = вода.

Вы получите немалое удовольствие и приобретете полезные знания, если повторите этот опыт Блэка, а также проведете следующие опыты.

Опыт 1. Возьмите два одинаковых сосуда. В один положите лед при 0°C, в другой налейте такое же количество воды при 0°C и по термометру наблюдайте за постепенным их нагреванием в комнате (при температуре воздуха около 20°C). Если через ¼ ч вода нагреется до 4°C (это зависит, конечно, от массы взятой воды, приведенное время лишь примерное), то весь лед растает (т. е. превратится в воду при 0°C) лишь через 5 ч.

Подумайте, как на основании этих данных вычислить теплоту плавления льда.

Опыт 2. (По описанию Блэка.) «Я взял два одинаковых сосуда с плоским дном и поставил их на горячую плиту, налив 8 унций (1 унция равна примерно 28,35 г) воды при 20°C. Оба сосуда начали кипеть через 3½ мин, и через 18 мин вся вода выкипела». Вычислите теплоту парообразования воды.

Вы можете повторить опыт, пользуясь одним сосудом. Постарайтесь объяснить причину расхождения между значением теплоты парообразования воды, вычисленным их опыта и приводимым в учебнике физики.

Опыты Блэка со льдом и водой, естественно, подводили к вопросу: не требуют ли различные вещества для нагревания на одно и то же число градусов различного количества теплоты?

В опыте по определению температуры смеси двух порций воды Блэк одну из порций заменил ртутью и установил, что «ртуть обладает меньшей емкостью по отношению к тепловой материи, чем вода».

Блэк точно разграничивал понятия «количество теплоты» и «температура». Он писал: «Когда мы говорим о распределении теплоты, всегда нужно различать количество теплоты и силу теплоты (по современной терминологии температуру) и не смешивать эти две величины».

Название единицы количества теплоты «калория» появилось лишь в 1852 году во Франции. В других странах, где метрическая система распространилась позже, термин «калория» появился тоже значительно позднее. В России термин «калория» стали применять лишь в 90-х годах прошлого столетия.

Теория теплорода, ложная в своей основе, сыграла в истории науки и положительную роль: она способствовала развитию учения о тепловых процессах, без чего немыслимо и их техническое использование. Теория теплорода отмерла, но, умирая, она оставила нам терминологию. Прогрессивные в прошлом термины «количество теплоты», «теплоемкость», «скрытая теплота» уже не соответствуют современному взгляду на тепловые процессы как на изменения внутренней энергии тела. Эти термины препятствуют правильному пониманию физической сущности тепловых явлений. Употребляя эти термины, авторы учебников физики обычно разъясняют их условное значение.

Постепенно и калория исчезает из употребления и заменяется другими общепринятыми единицами энергии: джоулями и киловатт-часами. (1 кал = 4,19 Дж = 1,16 * 10-3 Вт * ч.)

phscs.ru

Температура смеси - Справочник химика 21

    Графически соотношение между dQ dx и dq dx при разных давлениях показано на рис. 3.13. Из этих соотношений можно определить критические условия теплового взрыва. Если при постоянном значении То изменять начальное давление реагирующего газа, то изменение dQ/dx и dq dx происходит так, как показано на рис. 3.13, а. При изменении dQ dx по кривой 1 скорость тепловыделения будет возрастать до достижения температуры Г/. Выше этой температуры скорость теплоотдачи превышает скорость тепловыделения и рост температуры смеси прекратится. Если dQ/dx изменяется по кривой 3, то количество выделившегося тепла будет превышать количество тепла, отведенного стенками. Смесь будет непрерывно разогреваться и, в свою очередь, повышать скорость реакции. В результате произойдет самовоспламенение смеси. При изменении dQ dx по кривой 2 температура будет возрастать до Гь В точке касания кривой dQ dx и прямой dq dx наблюдается равенство скоростей тепловыделения и теплоотвода. Система находится в неустойчивом равновесии. Незначительное повышение температуры в точке Ту приведет к самопроизвольному воспламенению смеси. Температура Ти таким образом, является температурой самовоспламенения смеси. [c.129]     Характерной особенностью фотохимических реакций является слабая зависимость их скорости от начальной температуры смеси. Изменение в широких пределах начальной температуры смеси не оказывает существенного влияния на интенсивность излучения. Соответственно этому, как показывает опыт, в предпламенной зоне не происходит возрастания скорости предпламенных процессов, что, в свою очередь, не отражается и на скорости распространения пламени (скорости горения). Так, например, изменение начальной температуры метано-воз-душной смеси с 20 до 680°С приводит к возрастанию скорости распространения пламени всего в 10 раз (с 30 до 300 см/с [144], в то время как согласно правилу Вант-Гоффа скорость большинства химических реакций с повышением температуры только на 10 градусов возрастает в 2—4 раза. Ни тепловая , ни диф- [c.124]

    Вследствие затраты тепла на эндотермическую реакцию температура смеси углеводородных фракций и катализатора понижается с I до при продвижении этих потоков сверху вниз через рабочую зону реактора. Формула для вычисления температурного градиента [c.247]

    После добавки всего хлористого алкила температуру смеси поднимают до 180—190° и поддерживают на этом уровне 1—2 часа. Затем реакционную смесь охлаждают, медленно добавляют 150 частей 25%-ной соляной кислоты и кипятят при перемешивании до растворения всего цинка. После этого масло промывают, сушат и перегонкой под пониженным давлением удаляют избыток фенола и когазина И, содержащих некоторое количество олефиновых углеводородов. [c.246]

    Колебания температуры смеси на выходе из продуктового холодильника должны быть минимальными. Повышение температуры в сепараторе, где выделяется циркулирующий водородсодержащий газ, приведет к резкому увеличению плотности водородсодержащего газа и перегрузке компрессора. В сепараторе высокого давления необходимо поддерживать температуру ниже 60 °С, так как при более высоких температурах возможен унос жидких нефтепродуктов с циркулирующим водородсодержащим газом, которые, скапливаясь в системе раствора МЭА, ухудшают условия очистки газов. [c.125]

    Закон применим, когда температура смеси ниже значений критических температур всех входящих в нее компонентов, и упругость паров смеси известна. [c.88]

    Теплота испарения индивидуальных веществ расходуется па преодоление межмолекулярных сил, действующих в жидком состоянии, а также на преодоление давления в процессе возникновения паровой фазы. Жидкие углеводородные смеси выкипают в некотором интервале температур, поэтому часть подводимой теплоты расходуется на повышение температуры смеси и точное определение энтальпии испарения становится затруднительным. [c.45]

    Многие авторы пробовали использовать более точную модель для тепловых взрывов, основанную на распределении температуры смеси, а не на наличии некоторой средней температуры. В таком случае можно записать обычное уравнение в трех измерениях [см. уравнение (XIV.2.1)]  [c.379]

    Из стабилизационной колонны 17 сверху уходят пары отгона и газы, а снизу —очищенный керосин. Режим работы колонны выдерживается таким, чтобы получить продукт с нужной температурой вспышки. Температура низа этой колонны 267 °С, давление 0,44 МПа. Перед теплообменником 12 в поток горячей газопаровой смеси впрыскиваются вода и раствор ингибитора, при этом температура смеси понижается до 205 °С. Далее смесь поступает в теплообменник 12. В горячем сепараторе 9 газопродуктовая смесь разделяется при несколько более высокой температуре. [c.53]

    При объединении нагретых потоков сырья и газа часть сырья переходит в парообразное состояние (испаряющим агентом является газ), на что затрачивается тепло, поэтому температура смеси понижается в данном случае приблизительно на 35 С. [c.53]

    Реактор оборудован скребково-лопастным перемешивающим устройством. В реакторе 15 при температуре термообработки смазку выдерживают заданное по технологической карте время. Затем при работающем перемешивающем устройстве в аппарат закачивают оставшуюся часть масла. Температуру смеси понижают до 175—185 °С, и при этой температуре проводят изотермическую кристаллизацию. Если необходимо, смазку частично охлаждают до 160—165 °С, после чего насосом 6 из смесителя 16 вводят присадки. Подача концентрата присадок возможна и после первой ступени охлаждения в холодильнике 17. [c.102]

    Реактор полного вытеснения (идеальный трубчатый реактор). В длинных трубчатых реакторах локальное перемешивание жидкости имеет большее значение для распределения концентраций и температур в направлении, перпендикулярном оси, ч м в осевом направлении, ввиду того, что поперечный размер аппарата, как правило, в несколько раз (или даже в несколько десятков раз) меньше длины. В результате появляется довольно значительная однородность состава и температуры смеси реагентов в поперечном сечении аппарата при относительно малом влиянии перемешивания на осевое распределение этих величин. Таким образом, для упрощения математического описания трубчатого реактора можно принять модель движения потока, называемую поршневым течением (полным вытеснением). Такое течение характеризуется плоским профилем скорости, отсутствием перемешивания, массо- и теплообмена в направлении оси реактора, а также полным перемешиванием в направлении, перпендикулярном оси. При этих предположениях в реакторе с поршневым течением мы имеем дело также [c.295]

    Состав смеси Максимально низкая температура смеси, °С [c.303]

    В противном случае степень превращения Хд просто недостижима из-за разогрева реагирующей смеси в ироцессе реакции до равновесной температуры Т . Если же входная температура смеси выбирается с учетом условия (111, 197), то для достижения нужной степени превращения в реакторе х значение может оказаться таким низким, что реакция вообще не пойдет при данной температуре либо потребуется чрезмерное увеличение размеров аппарата вследствие малой скорости реакции в его начале. [c.123]

    В течение некоторого периода 0г после начала впрыска топлива давление и температура смеси повышаются вследствие сжатия. В это время развиваются предпламенные реакции, а к кон- [c.155]

    Была установлена слабая зависимость скорости предпламенных процессов от начальной температуры смеси. Изменение начальной температуры смеси -гексан-Ь кислород+аргон на 136 К практически не отразилось на положении начала заметного роста продуктов превращения. Максимальная концентра- [c.121]

    Зависимость температуры продуктов сгорания от состава и строения углеводородов при а=1, определенная в калориметре при исходной температуре смеси, равной 273 К, показана на рис. 3.28 [167]. [c.165]

    Если уравнение Битти—Бриджмена используется в вириальной форме, то для определения безразмерной температуры необходимо знать критическую температуру, которая для смеси неизвестна. В случае, если парциальные давления компонентов смеси ниже критических, а температуры смеси в рассчитываемой области таковы, что конденсация какого-либо компонента смеси исключается, можно вместо критической температуры взять произвольную температуру и рассматривать ее как некоторый нормирующий делитель, одинаковый для всех компонентов смеси. Это упрощает расчеты, не снижая их точности. [c.41]

    Состояние, близкое к полному перемешиванию, дает возможность использовать очень важное предположение, упрощающее уравнения балансов реактора можно принять, что состав и температура смеси одинаковы во всем реакционном пространстве В результате на входе в реактор возникает скачкообразное изм енение этих параметров от значений для вводимого потока до значений, действительных в реакционном пространстве. Состав и температура отходящего потока должны быть при этом такими же, как в реакционном пространстве (рис. УП1-21). [c.293]

    В реакторах полного перемешивания обеспечивается не только однородность состава, но также и температуры смеси реагентов. Следовательно, такой реактор может работать в изотермическом режиме даже в том случае, когда тепловой эффект реакции велик. Таким образом, реакторы данного типа оказываются особенно пригодными для процессов, которые необходимо проводить в широком интервале температур. Некоторые затруднения может вызвать теплообмен. Ввиду низкого значения отношения площади поверхности стенок аппарата к его объему часто возникает необходимость установки дополнительных теплообменных элементов, располагаемых либо в сосуде (например, змеевик), либо во внешнем цикле (так называемый выносной теплообменник). [c.304]

    Изменения степени превращения и температуры во время реакции представлены на рис. УИ1-36. На основании полученных результатов находим, что время, необходимое для достижения степени превращения а = 0,98, составляет Тг = 1,20 ч, а конечная температура смеси реагентов [c.334]

    Преимущество термической переработки нефти с добавлением газов Сз и С4 состоит в снижении критической температуры смеси ниже температуры греющих змеевиков. [c.315]

    Второй способ подвода тепла для обеспечения протекания эндотермической реакции дегидрирования основан па введении в реакционную смесь большого количества перегретого до высокой температуры водяного пара [86]. По способу, применяемому фирмой Доу Кемикал Компани, работают с весовым отношением водяного пара к этилбензолу 2,6 1. Водяной пар предварительно перегревается до 710°, температура поступающих в процесс паров этилбензола 520°. Над катализатором оба пара смешиваются, температура смеси ( остаиллет около 625°. Гаг ы остаются п почп ровно 0,5 сек. и за это время (за один проход через печь) достигается превращение. 57% этилбензола. Применение метода стало возможно после разработки катализатора, устойчивого против действия перегретого водяного пара. Такие катализаторы были разработаны фирмой Стандард Ойл Депелонмент и. Шелл Девелопмент Комнапи под названием катализаторов 1707 и 105 [87]. [c.237]

    Вайлей с сотрудниками [4] опубликовали обзорную статью о применении мочевины в промышленном процессе для нефтяных фракций, более высококипящих, чем бензиновые. Теплый насыщенный водный раствор мочевины смеш хвается с углеводородным сырьем и метилизобутил-кетоном. Температура смеси непрерывно понижается, что обеспечивает насыщенное состояние раствора в точение всей реакции мочевины. Комплекс отделяется фильтрованием, промывается и разлагается. Углеводороды, вступившие в комплекс, извлекаются, а раствор мочевины и других компонентов вновь возвращается в процесс. [c.225]

    Kгipбиды получают прокаливанием при высоких температурах смеси порошков металлов или их оксидов с углем в электрических печах  [c.399]

    Поскольку при сгорании топлива в камере развивается высокая температура (1500—1800 °С), а материалы камеры, лопаток газовой турбины и реактивного сопла не выдерживают столь высоких температур, горячие газы разбавляют вторичным воздухом непосредственно после зоны горения топлива. При смешении газового потока с вторич — ным воздухом температура смеси снижается до 850 — 900 °С. В зоне горения топлива необходимо создавать условия для обеспечения стабильности процесса горения без срывов пламени. Скорость распространения фроггта г[ламени составляет около 40 м/с. Для снижения скорости газо воздушного потока до величин менее скорости распространения фронта пламени в камерах сгорания устанавливают различ — ные завихрители, стабилизаторы, обтекатели, экраны и т.д. Эти устройства, кроме того, повышают турбулентность движения горючей смеси и тем самым ув 1личивают скорость ее сгорания. [c.102]

    Внешние параметры смеси (температура, давление) также оказывают влияние на и . С ростом начальной температуры смеси (Го) скорость распространения пламени возрастает, однако эта зависимость значительно более слабая, чем аррениу-совская. Она удовлетворительно описывается уравнением ( а — постоянная)  [c.119]

    Сырье — концентрат или гудрон — подается насосом 34 через паровой подогреватель 33 в смеситель 32. Сюда же подается и рафинатная фаза, выходящая из экстрактора 35, и экстрактная фаза, нагнетаемая насосом 22 из экстрактора 21. Из смесителя смесь после охлаждения в холодильнике 29 вводится в экстрактор 27. Степень предварительного нагрева сырья и последующего охлаждения смеси, выходящей из смесителя 32, зависит от вида очищаемого сырья. В смесителе необходимо обеспечить хорошее смешение и необходимую температуру смеси перед ее подачей в экстрактор 27. Температура экстракции должна быть ниже температурьГ взаимной растворимости компонентов, чтобы смесь представляла две фазы. [c.77]

    Одной из форм совершенствования процесса является порционная подача растворителя, при которой создаются условия для разделения кристаллизацией высоко- и низкоплавких углеводородов. При первом разбавлении сырья расход растворителя должен быть таким, чтобы из раствора выделялись самые высокоплавкие углеводороды, образующие кристаллы наибольших размеров. При порционном разбавлении (2—4 порции) каждая порция вводимого растворителя должна иметь температуру на 2—3 °С выше температуры смеси в точке, куда подается растворитель. Порционная подача растворителя эффективна при депарафинизации и обез-масливании дистиллятного сырья широкого фракционного состава. [c.80]

    Дальнейшие исследования привели к установлению ряда специфических особенностей этого явления. Так, детонационное распространение пламени обычно наблюдалось в смесях, харак-теризуюшихся высокой нормальной скоростью распространения пламени. Скорость детонации изменялась с изменением состава и вида горючей смеси. Наблюдались предельные значения состава смеси, выше и ниже которых смесь не детонировала (табл. 3.5). При этом концентрационные пределы детонации, или детонационные границы, были более узкими, чем границы зажигания. Скорость детонации практически не изменялась при изменении диаметра трубы (если он был больше определенного малого значения — примерно 15 мм), кривизны трубы, начального давления, температуры смеси и условий позади фронта. [c.140]

    Гаким образом, поставив эксперимент по оп[)еделению равновесной температуры смеси данного состава, что относительно просто, [lo KOjLbKy при этом не требуется иодвода реагентов в зону реакции и отвода их из нее, далее ио формуле (111,146) уже можно рассчитать оптимальное значение температуры реакции, при котором смесь этого состава будет реагировать с максимальной скоростью. Если известна зависимость равновесной температуры Tg от степени превращения, то с помощью формулы (111,146) можно построить и зависимость оптимальной температуры Т т. от степени иревращения (рис. 111-15), которая может быть исиользована для расчета оптимального температурного профиля в реакторе идеального вытеснения (рис. 111-14). [c.116]

    На рис. 3.7 показаны схема ламинарного пламени, распределение в нем температуры и скорости теп-ловцделеиия. Заштрихованная часть представляет собой зону пламени — светящуюся зону или фронт пламени. Слева от светящейся зоны находится свежая горючая смесь. На расстоянии 5—10 мм от фронта пламени в свежей смеси начинают протекать физико-химические процессы, приводящие к подъему температуры смеси и выделению тепла. Эту зону можно назвать зоной предпламен-ного превращения. Справа от светящейся зоны лежит зона продуктов сгорания. [c.117]

    ЮТСЯ заметные химические превращения в горючей смеси. Начальная температура смеси при этом остается постоянной. Заметное увеличение температуры свежей смеси в предпламенной зоне наблюдается на расстоянии примерно 1,5 мм от светящейся зоны. В предпламенной зоне молекула горючего подвергается фрагментации и окислению, о чем свидетельствует образование низкомолекулярных продуктов — Нг, СО, СОг, НгО и в небольших количествах СН4, С2Н4, С2Н2. Эти продукты пересекают границу светящейся зоны со стороны свежей смеси. Аналогичные результаты были получены при исследовании пламени метана, этана, этилена, пропана и других углеводородов. Приведенные на рис. 3.9 закономерности отражают общий характер явления — предпламенного химического превращения свежей смеси. [c.121]

    Наконец, Бра 1нор и другие [7 наблюдали образованно радикала метина, уг [орода (С + ) и Сз нри высокочастотном разряде в находящейся при норлгальной температуро смеси метана с водородом. [c.75]

    Пэтри и Монсо [49, 50] весьма тщательно изучили влияпие переменных факторов (температуры, времени контакта и отношения метан кислород) на выход формальдегида при атмосферном давлении. Изучая в поточных системах смесь метана и воздуха в кварцевой трубке при температурах от 500 до 900° С, они нашли, что максимальные выходы формальдегида при окислении метана редко превышали 1%, а наивысшая концентрация формальдегида в выходящем газе составляла 0,2%. Как функция времени контакта, конверсия метана до формальдегида проходит через максимуд в области малого времени контакта и высоких температур. Смеси с отношением метана к воздуху меньшим i давали наивысшие выходы формальдегида, особенно при температуре выше 700° С. Следует отметить, что заполнение реактора в качестве насадки кварцевой струн[c.323]

    Само собой разумеется, что такое свойство, как испаряемость имеет большое значение для характерпстики эксплуатационных свойств топлива в камере сгорания должна образовываться взрывчатая и сгорающая без остатка смесь топлива и воздуха. Распыленный карбюратором в виде брызг в потоке воздуха бензин вводится в двигатель под действием поршня теоретически брызги должны испариться и образовать не содержащую следов жидкости смесь воздуха и паров топлива. На практике же испарение происходит неполностью, и существенная часть жидкости проходит через впускной трубопровод в цилиндр в виде струи или движущейся по стенкам трубопровода пленки. Степень испарения мол ет быть увеличена, если (при одинаковом характере распыления топлива) увеличить время контакта с воздухом, повысить температуру смеси пли использовать топливо с большей испаряемостью. Использование первого пути ограничивается конструкцией двигателя и его эксплуатационными характеристиками, второго — уменьшением объемного к. п. д., третьего — экономиче-СКИЛ1И соображениями. Тем не менее, основной тенденцией в ближайшие годы будет увеличение выпуска легкоиспаряющихся бензинов. [c.388]

chem21.info

Расчет времени нагрева, температуры смешанной воды и мощности водонагревателя

Цены на водонагреватели в нашем каталоге

Простой прикидочный расчет объема

Формула расчета времени нагрева

Формула расчета количества и температуры смешанной воды

Расчет мощности водонагревателя

Водонагреватели объемом от 5 до 1000 литров позволяет решить практически любую задачу по обеспечению человека горячей водой.

При подборе накопительного прибора исходят из пиковой (максимальной) потребности в горячей воде. Итак, типичный пример. Семья из трех человек хочет приобрести накопительный водонагреватель на время отключения горячей воды. Какого объема выбрать прибор?

Простой прикидочный расчет объема

Как правило, наибольшее количество воды тратится при принятии душа. В среднем, за один сеанс, расход составляет 60 литров воды при температуре 38-40°С. Этого хватает примерно на 10 минут полноценного душа. Соответственно, если три человека, захотят принять водные процедуры друг за другом, им понадобится 180 литров теплой воды. Если учесть, что температура нагрева воды в водонагревателе составляет 60°С, её придется разбавить. Разбавив горячую воду из водонагревателя холодной получаем объем теплой воды в два раза больший, чем было горячей в водонагревателе. Получается, что нам понадобится 180:2= 90 литров горячей воды. Прибавляя к 90 литрам еще 10% для обеспечения водой хозяйственных нужд (помыть посуду и т.д.), мы получаем оптимальную емкость равную 100 литрам.

Конечно, если планируется принимать ванну, то количество воды нужно расчитывать, исходя из заполняемого объема ванны.

Если между сеансами быдет перерыв, то можно обойтись и более компактным прибором литров на 30, так как нагрев такого объема при мощности 2 кВт длится примерно 1 час, то соответственно через данный промежуток времени можно принять душ не боясь, что теплая вода внезапно кончится.

Для точного расчета можно применить следующие формулы:

Формула расчета времени нагрева

t = (m ∙ c ∙ ∆ϑ) / (P ∙ η)

t - время нагрева в часах c = 1,163 (Ватт/час) / (кг ∙ К) m - количество воды в кг P - мощность в Вт η - КПД ∆ϑ - разность температур в К (ϑ1 - ϑ2) ϑ1 - температура холодной воды в °C ϑ2 - температура горячей воды в °C

Формула расчета количества и температуры смешанной воды

mсмеш=(m2 ∙(ϑ2- ϑ1))/(ϑсмеш - ϑ1)    ϑсмеш = (m1 ∙ ϑ1 + m2 ∙ ϑ2) / (m1 + m2)

mсмеш - количество смешанной воды в кг    m2 - количество горячей воды в кг ϑсмеш - температура смешанной воды в °С    ϑ1 - температура холодной воды в °C m1 - количество холодной воды в кг    ϑ2 - температура горячей воды в °C   Пример: Сколько смешанной воды при температуре ϑсмеш 40°C получится при добавлении холодной воды ϑ1 10°C к 80 кг горячей воды ϑ2 55°C?

mсмеш = 80 ∙ (55-10) / (40 - 10) = 120 кг = 120 л   Пример: Какова будет температура воды при смешивании 80 кг воды (m2) при температуре ϑ2 55°C с 40 кг воды (m1) при температуре ϑ1 10°C?    ϑсмеш = (40 ∙ 10 + 80 ∙ 55) / (40 + 80) = 40°С

Расчет мощности водонагревателя

Время нагрева воды в накопительном водонагревателе напрямую зависит от мощности нагревательного элемента. В комбинированных водонагревателях основным нагревательным элементом является теплообменник, подключенный к системе отопления частного дома. А ТЭН используется для компенсации тепловых потерь при длительном отсутствии разбора горячей воды, так как тепловая мощность теплообменника значительно больше тепловой мощности ТЭНа.

Прибегнув к уже упоминавшейся формуле, мы можем сравнить время нагрева прибора объемом 120 литров при работе ТЭНа мощностью 2 кВт или теплообменника мощностью 8 кВт (значение верно при температуре воды в системе отопления +80°С). Температура горячей воды 55°С, температура холодной воды +10°С.

t = m · c · ∆ϑ / P · η

t = 120 · 1.163 · 45 / (2000 · 0.98) = 192 мин  >  48 мин = 120 · 1.163 · 45 / (8000 · 0.98)

Для удобства можно воспользоваться следующей таблицей.

    Источник: teplo-spb.ru

teplo-spb.ru

Как найти первоначальную температуру газа

Содержание

  1. Инструкция

Как найти первоначальную температуру газа

Часто в ходе какого-либо технологического процесса или при решении задач из курса термодинамики возникает необходимость ответить на вопрос: какова была начальная температура смеси газов, находившейся при определенных условиях (объеме, давлении и т.д.)

Инструкция

  • Предположим, заданы такие условия. Смесь трех газов: водорода, углекислого газа и кислорода, первоначально занимала сосуд объемом 22, 4 литра. Масса водорода составляла 8 г, масса углекислого газа – 22 г, а кислорода – 48 г. При этом парциальное давление водорода ровнялось примерно 4,05*10^5 Па, углекислого газа – 5,06*10^4 Па, а кислорода, соответственно – 3,04*10^5 Па. Требуется определить первоначальную температуру этой газовой смеси.
  • Прежде всего вспомните закон Дальтона, гласящий: общее давление смеси газов, находящейся в каком-то объеме, равно сумме парциальных давлений каждого из компонентов этой смеси. Сложите известные вам величины: 4,05*10^5 + 0,506*10^5 + 3,04*10^5 = 7,596*10^5 Па. Для упрощения расчетов примите округленное значение: 7,6*10^5 Па. Таково давление газовой смеси.
  • Теперь вам на помощь придет универсальное уравнение Менделеева-Клапейрона, описывающее состояние идеального газа. Разумеется, ни один из компонентов вашей смеси не является идеальным газом, но его вполне можно использовать в расчетах – погрешность будет очень невелика. Это уравнение записывается в такой форме: PV = MRT/m, где P – давление газа, V – его объем, R – универсальная газовая постоянная, M – фактическая масса газа, m – его молярная масса.
  • Но ведь у вас смесь газов. Как же быть в этом случае? Надо лишь немного преобразовать уравнение Менделеева-Клапейрона, записав его в таком виде: PV = (M1/m1 + M2/m2 + M3/m3) RT.
  • Легко можно понять, что если бы количество компонентов газовой смеси было равно 4, 5, 6 и т.д., уравнение преобразовывалось бы абсолютно аналогичным образом. Следовательно, искомая начальная температура газовой смеси вычисляется по формуле: Т = PV/(M1/m1 + M2/m2 + M3/m3)R.
  • Подставив в эту формулу известные вам значения (с учетом того, что величина R равна 8,31), и произведя вычисления, вы получите: 7,6*10^5* 0,0224 / (8,31 * 7,5) = 17024/62,325 = 273,15. Это значение температуры выражено, разумеется, в градусах Кельвина. То есть получается, что первоначально газовая смесь содержалась при температуре, равной 0 градусов по шкале Цельсия. Задача решена.

completerepair.ru