Как определить период по графику. Как найти период по графику


Как определить период по графику

Многие математические функции имеют одну особенность, облегчающую их построение, - это периодичность, то есть повторяемость графика на координатной сетке через равные промежутки.

Инструкция

  • Самыми известными периодическими функциями математики являются синусоида и косинусоида. Эти функции имеют волнообразный характер и основной период, равный 2П. Также частным случаем периодической функции является f(x)=const. На позицию х подходит любое число, основного периода данная функция не имеет, так как представляет собой прямую.
  • Вообще функция является периодической, если существует такое целое число N, которое отлично от нуля и удовлетворяет правилу f(x)=f(x+N), таким образом обеспечивая повторяемость. Период функции - это и есть наименьшее число N, но не ноль. То есть, например, функция sin x равна функции sin (x+2ПN), где N=±1, ±2 и т.д.
  • Иногда при функции может стоять множитель (например sin 2x), который увеличит или сократит период функции. Для того чтобы найти период по графику, необходимо определить экстремумы функции - самую высокую и самую низкую точки графика функции. Так как синусоида и косинусоида имеют волнообразный характер, это достаточно легко сделать. От данных точек постройте перпендикулярные прямые до пересечения с осью Х.
  • Расстояние от верхнего экстремума до нижнего будет половиной периода функции. Удобнее всего вычислять период от пересечения графика с осью Y и, соответственно, нулевой отметки по оси х. После этого необходимо умножить полученное значение на два и получить основной период функции.
  • Для простоты построения графиков синусоиды и косинусоиды необходимо отметить, что если при функции стоит целое число, то ее период удлинится (то есть 2П необходимо умножить на этот коэффициент) и график будет выглядеть более мягко, плавно; а если число дробное, наоборот, сократится и график станет более «острым», скачкообразным на вид.

completerepair.ru

Как найти период

Период – это физическая величина, обозначающая промежуток времени, за который происходит одно полное колебание в механическом, электромагнитном или ином повторяющемся процессе. В школьном курсе физики период является одной из величин, нахождение которых наиболее часто требуется в задачах. Вычисление периода производится с применением известных формул, соотношений параметров тел и их движений в рассматриваемой колебательной системе.

Инструкция

  • В наиболее простом случае решения практических задач на периодические колебания тел следует учитывать само определение физической величины. Период измеряется в секундах и равен интервалу времени за одно полное колебание. В рассматриваемой системе в момент выполнения равномерных колебаний подсчитайте их число за строго фиксированное время, например за 10 с. Вычислите период по формуле Т = t/N, где t – время колебаний (с), N – подчитанное значение.
  • При рассмотрении задачи на распространение звуковых волн с известной скоростью и длиной колебаний для вычисления периода (Т) используйте формулу: Т= λ/v, где v - скорость распространения периодических колебаний (м/с), λ - длина волны (м). Если известна лишь частота (F) совершаемых телом движений, определите период исходя из обратного соотношения: T = 1/F (с).
  • Если задана механическая колебательная система, состоящая из подвешенного тела массой m (м) и пружины с известной жесткостью k (Н/м), определить период колебаний груза (Т) можно по формуле T=2π*√(m/k). Высчитайте искомую величину в секундах, подставив известные значения.
  • Движение тела по орбите с заданным радиусом (R) и постоянной скоростью (V) также может быть периодическим. В данном случае колебание происходит по окружности, т.е. тело за один период проходит путь, равный длине L = 2πR, где R – радиус окружности (м). При равномерном движении время, затрачиваемое на него, определяется как соотношение пройденного пути к скорости перемещения (в данной задаче – полного колебания). Таким образом, найдите значение периода движения тела по орбите по следующей формуле Т = 2πR/V.
  • В разделе электродинамики часто рассматриваются задачи для электромагнитного колебательного контура. Процессы в нем могут быть заданы общим уравнением синусоидального тока: I = 20*sin100*π*t. Здесь число 20 обозначает амплитуду колебаний тока (Im) контура, 100*π – циклическую частоту (ω). Вычислите период электромагнитных колебаний по формуле Т= 2π /ω, подставив соответствующие значения из уравнения. В данном случае Т = 2*π/(100*π) = 0,02 с.

completerepair.ru

как найти период и частоту колебаний?

В случае если известны длина волны и скорость распространения колебаний, частоту вычислите следующим образом: F=v/λ, где F - частота (Гц) , v - скорость распространения колебаний в среде (м/с) , λ - длина волны (м) . Если известна частота, период найти можно и в том случае, если скорость распространения колебаний неизвестна. Формула для вычисления периода по частоте выглядит следующим образом: T=1/F, где T - период колебаний (с) , F - частота (Гц) . Из сказанного выше следует, что найти частоту, зная период, можно также без информации о скорости распространения колебаний. Способ ее нахождения такой же: F=1/T, где F - частота (Гц) , T - период колебаний (с) . Для того чтобы узнать циклическую частоту колебаний, вначале вычислите их обычную частоту любым из указанных выше способов. Затем умножьте ее на 2π: ω=2πF, где ω - циклическая частота (радиан в секунду) , F - обычная частота (Гц) Отсюда следует, что для вычисления обычной частоты при наличии информации о циклической следует воспользоваться обратной формулой: F=ω/(2π), где F - обычная частота (Гц) , ω - циклическая частота (радиан в секунду) . При решении задач на нахождение периода и частоты колебаний, а также длины волны используйте следующие физические и математические константы: - скорость света в вакууме: c=299792458 м/с (некоторые исследователи, в частности, креационисты, считают, что в прошлом данная физическая константа могла иметь другую величину) ; - скорость звука в воздухе при атмосферном давлении и нуле градусов по Цельсию: Fзв=331 м/с; - число «пи» (до пятидесятого знака) : π=3,14159265358979323846264338327950288419716939937510 (безразмерная величина).

touch.otvet.mail.ru

Как определить функцию по графику

Содержание

  1. Инструкция

Как определить функцию по графику

Координата абсолютно любой точки на плоскости определяется двумя ее величинами: по оси абсцисс и оси ординат. Совокупность множества таких точек и представляет собой график функции. По нему вы видите, как меняется значение Y в зависимости от изменения значения Х. Также вы можете определить, на каком участке (промежутке) функция возрастает, а на каком убывает.

Инструкция

  • Что можно сказать о функции, если ее график представляет собой прямую линию? Посмотрите, проходит ли эта прямая через точку начала отсчета координат (то есть, ту, где величины Х и Y равны 0). Если проходит, то такая функция описывается уравнением y = kx. Легко понять, что чем больше будет значение k, тем ближе к оси ординат будет располагаться эта прямая. А сама ось Y фактически соответствует бесконечно большому значению k.
  • Посмотрите на направлении функции. Если она идет «слева снизу – направо наверх», то есть через 3-ю и 1-ю координатные четверти, она возрастающая, если же «слева сверху – направо вниз» (через 2-ю и 4-ю четверти), то она убывающая.
  • Когда прямая не проходит через начало координат, она описывается уравнением y = kx + b. Прямая пересекает ось ординат в точке, где y = b, и значение y может быть как положительным, так и отрицательным.
  • Функция называется параболой, если описывается уравнением y = x^n, и ее вид зависит от величины n. Если n – любое четное число (простейший случай – квадратичная функция y = x^2), график функции представляет собой кривую, проходящую через точку начала координат, а также через точки с координатами (1;1), (-1;1), поскольку единица в любой степени останется единицей. Все значения y, соответствующие любым значениям X, отличным от нуля, могут быть только положительными. Функция симметрична относительно оси Y, а ее график расположен в 1-й и 2-й координатных четвертях. Легко можно понять, что чем больше величина n, тем приближеннее график будет к оси Y.
  • Если n – нечетное число, график этой функции представляет собой кубическую параболу. Кривая располагается в 1-й и 3-й координатных четвертях, симметрична относительно оси Y и проходит через начало координат, а также через точки (-1;-1), (1;1). Когда квадратичная функция представляет собой уравнение y = ax^2 + bx + c, форма параболы совпадает с формой в простейшем случае (y = x^2), однако ее вершина не находится в точке начала координат.
  • Функция называется гиперболой, если она описывается уравнением y = k/x. Легко можно видеть, что при значении х, стремящемся к 0, значение y возрастает до бесконечности. График функции представляет собой кривую, состоящую из двух ветвей и располагающуюся в разных координатных четвертях.

completerepair.ru