Деление многочленов "столбиком" ("уголком"). Деление с уголком с остатком


Деление многочленов "столбиком" ("уголком").

Начнём с некоторых определений. Многочленом n-й степени (или n-го порядка) будем именовать выражение вида $P_n(x)=\sum\limits_{i=0}^{n}a_{i}x^{n-i}=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots+a_{n-1}x+a_n$. Например, выражение $4x^{14}+87x^2+4x-11$ есть многочлен, степень которого равна $14$. Его можно обозначить так: $P_{14}(x)=4x^{14}+87x^2+4x-11$.

Коэффициент $a_0$ называют старшим коэффициентом многочлена $P_n(x)$. Например, для многочлена $4x^{14}+87x^2+4x-11$ старший коэффициент равен $4$ (число перед $x^{14}$). Число $a_n$ называют свободным членом многочлена $P_n(x)$. Например, для $4x^{14}+87x^2+4x-11$ свободный член равен $(-11)$. Теперь обратимся к теореме, на которой, собственно говоря, и будет основано изложение материала на данной странице.

Для любых двух многочленов $P_n(x)$ и $G_m(x)$ можно найти такие многочлены $Q_p(x)$ и $R_k(x)$, что будет выполнено равенство

\begin{equation} P_n(x)=G_m(x)\cdot Q_p(x)+R_k(x) \end{equation}

причём $k < m$.

Словосочетание "разделить многочлен $P_n(x)$ на многочлен $G_m(x)$" означает "представить многочлен $P_n(x)$ в форме (1)". Будем называть многочлен $P_n(x)$ – делимым, многочлен $G_m(x)$ – делителем, многочлен $Q_p(x)$ – частным от деления $P_n(x)$ на $G_m(x)$, а многочлен $R_k(x)$ – остачей от деления $P_n(x)$ на $G_m(x)$. Например, для многочленов $P_6(x)=12x^6+3x^5+16x^4+6x^3+8x^2+2x+1$ и $G_4(x)=3x^4+4x^2+2$ можно получить такое равенство:

$$ 12x^6+3x^5+16x^4+6x^3+8x^2+2x+1=(3x^4+4x^2+2)(4x^2+x)+2x^3+1 $$

Здесь многочлен $P_6(x)$ является делимым, многочлен $G_4(x)$ – делителем, многочлен $Q_2(x)=4x^2+x$ – частным от деления $P_6(x)$ на $G_4(x)$, а многочлен $R_3(x)=2x^3+1$ – остатком от деления $P_6(x)$ на $G_4(x)$. Замечу, что степень остатка (т.е. 3) меньше степени делителя, (т.е. 4), посему условие равенства (1) соблюдено.

Если $R_k(x)\equiv 0$, то говорят, что многочлен $P_n(x)$ делится на многочлен $G_m(x)$ без остатка. Например, многочлен $21x^6+6x^5+105x^2+30x$ делится на многочлен $3x^4+15$ без остатка, так как выполнено равенство:

$$ 21x^6+6x^5+105x^2+30x=(3x^4+15)\cdot(7x^2+2x) $$

Здесь многочлен $P_6(x)=21x^6+6x^5+105x^2+30x$ является делимым; многочлен $G_4(x)=3x^4+15$ – делителем; а многочлен $Q_2(x)=7x^2+2x$ – частным от деления $P_6(x)$ на $G_4(x)$. Остаток равен нулю.

Чтобы разделить многочлен на многочлен часто применяют деление "столбиком" или, как его ещё называют, "уголком". Реализацию этого метода разберём на примерах.

Перед тем, как перейти к примерам, я введу ещё один термин. Он не является общепринятым, и использовать его мы будем исключительно для удобства изложения материала. До конца этой страницы будем называть старшим элементом многочлена $P_n(x)$ выражение $a_{0}x^{n}$. Например, для многочлена $4x^{14}+87x^2+4x-11$ старшим элементом будет $4x^{14}$.

Пример №1

Разделить $10x^5+3x^4-12x^3+25x^2-2x+5$ на $5x^2-x+2$, используя деление "столбиком".

Решение

Итак, мы имеем два многочлена, $P_5(x)=10x^5+3x^4-12x^3+25x^2-2x+5$ и $G_2(x)=5x^2-x+2$. Степень первого равна $5$, а степень второго равна $2$. Многочлен $P_5(x)$ – делимое, а многочлен $G_2(x)$ – делитель. Наша задача состоит в нахождении частного и остатка. Поставленную задачу будем решать пошагово. Будем использовать ту же запись, что и для деления чисел:

Первый шаг

Разделим старший элемент многочлена $P_5(x)$ (т.е. $10x^5$) на старший элемент многочлена $Q_2(x)$ (т.е. $5x^2$):

$$ \frac{10x^5}{5x^2}=2x^{5-2}=2x^3. $$

Полученное выражение $2x^3$ – это первый элемент частного:

Умножим многочлен $5x^2-x+2$ на $2x^3$, получив при этом:

$$ 2x^3\cdot (5x^2-x+2)=10x^5-2x^4+4x^3 $$

Запишем полученный результат:

Теперь вычтем из многочлена $10x^5+3x^4-12x^3+25x^2-2x+5$ многочлен $10x^5-2x^4+4x^3$:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5-(10x^5-2x^4+4x^3)=5x^4-16x^3+25x^2-2x+5 $$

Этот многочлен допишем уже под чертой:

На этом первый шаг заканчивается. Тот результат, что мы получили, можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot 2x^3+5x^4-16x^3+25x^2-2x+5 $$

Так как степень многочлена $5x^4-16x^3+25x^2-2x+5$ (т.е. 4) больше степени многочлена $5x^2-x+2$ (т.е. 2), то процесс деления надобно продолжить. Перейдём ко второму шагу.

Второй шаг

Теперь уже будем работать с многочленами $5x^4-16x^3+25x^2-2x+5$ и $5x^2-x+2$. Точно так же, как и на первом шаге, разделим старший элемент первого многочлена (т.е. $5x^4$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{5x^4}{5x^2}=x^{4-2}=x^2. $$

Полученное выражение $x^2$ – это второй элемент частного. Прибавим к частному $x^2$

Умножим многочлен $5x^2-x+2$ на $x^2$, получив при этом:

$$ x^2\cdot (5x^2-x+2)=5x^4-x^3+2x^2 $$

Запишем полученный результат:

Теперь вычтем из многочлена $5x^4-16x^3+25x^2-2x+5$ многочлен $5x^4-x^3+2x^2$:

$$ 5x^4-16x^3+25x^2-2x+5-(5x^4-x^3+2x^2)=-15x^3+23x^2-2x+5 $$

Этот многочлен допишем уже под чертой:

На этом второй шаг заканчивается. Полученный результат можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot (2x^3+x^2)-15x^3+23x^2-2x+5 $$

Так как степень многочлена $-15x^3+23x^2-2x+5$ (т.е. 3) больше степени многочлена $5x^2-x+2$ (т.е. 2), то продолжаем процесс деления. Перейдём к третьему шагу.

Третий шаг

Теперь уже будем работать с многочленами $-15x^3+23x^2-2x+5$ и $5x^2-x+2$. Точно так же, как и на предыдущих шагах, разделим старший элемент первого многочлена (т.е. $-15x^3$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{-15x^3}{5x^2}=-3x^{2-1}=-3x^1=-3x. $$

Полученное выражение $(-3x)$ – это третий элемент частного. Допишем к частному $-3x$

Умножим многочлен $5x^2-x+2$ на $(-3x)$, получив при этом:

$$ -3x\cdot (5x^2-x+2)=-15x^3+3x^2-6x $$

Запишем полученный результат:

Теперь вычтем из многочлена $-15x^3+23x^2-2x+5$ многочлен $-15x^3+3x^2-6x$:

$$ -15x^3+23x^2-2x+5-(-15x^3+3x^2-6x)=20x^2+4x+5 $$

Этот многочлен допишем уже под чертой:

На этом третий шаг заканчивается. Полученный результат можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot (2x^3+x^2-3x)+20x^2+4x+5 $$

Так как степень многочлена $20x^2+4x+5$ (т.е. 2) равна степени многочлена $5x^2-x+2$ (т.е. 2), то продолжаем процесс деления. Перейдём к четвёртому шагу.

Четвёртый шаг

Теперь уже будем работать с многочленами $20x^2+4x+5$ и $5x^2-x+2$. Точно так же, как и на предыдущих шагах, разделим старший элемент первого многочлена (т.е. $20x^2$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{20x^2}{5x^2}=4x^{2-2}=4x^0=4. $$

Полученное число $4$ – это четвёртый элемент частного. Допишем к частному $4$

Умножим многочлен $5x^2-x+2$ на $4$, получив при этом:

$$ 4\cdot (5x^2-x+2)=20x^2-4x+8 $$

Запишем полученный результат:

Теперь вычтем из многочлена $20x^2+4x+5$ многочлен $20x^2-4x+8$:

$$ 20x^2+4x+5-(20x^2-4x+8)=8x-3 $$

Этот многочлен допишем уже под чертой:

На этом четвёртый шаг заканчивается. Полученный результат можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot (2x^3+x^2-3x+4)+8x-3 $$

Так как степень многочлена $8x-3$ (т.е. 1) меньше степени многочлена $5x^2-x+2$ (т.е. 2), то процесс деления завершён. Частным от деления многочлена $P_6(x)$ на многочлен $G_2(x)$ есть многочлен $Q_3(x)=2x^3+x^2-3x+4$. Остаток от деления $P_6(x)$ на $G_2(x)$ – это многочлен $R_1(x)=8x-3$. По сути, мы представили исходный многочлен $P_6(x)$ в форме (1):

$$ P_6(x)=G_2(x)\cdot Q_3(x)+R_1(x) $$

Ответ: частное от деления – многочлен $2x^3+x^2-3x+4$, остаток – многочлен $8x-3$.

Пример №2

Разделить $4x^3+2x-11$ на $x+5$, используя деление "столбиком".

Решение

Здесь можно использовать схему Горнера (и это было бы несколько менее громоздко). Однако для сугубо демонстрационных целей используем деление "столбиком". Подробные пояснения есть в примере №1, посему здесь укажем только ход решения.

Результат можно записать в такой форме:

$$ 4x^3+2x-11=(x+5)\cdot(4x^2-20x+102)-521 $$

Следовательно, частным от деления $4x^3+2x-11$ на $x+5$ является многочлен $4x^2-20x+102$, а остаток есть число $(-521)$ (по сути, это многочлен нулевого порядка).

Ответ: частное – многочлен $4x^2-20x+102$, остаток – число $-521$.

Пример №3

Разделить $7x^3+9x^2-5x+9$ на $5x^7+10x^6-17x^2+14x-7$.

Решение

Степень делителя (т.е. многочлена $5x^7+10x^6-17x^2+14x-7$) равна $7$. Степень делимого (многочлена $7x^3+9x^2-5x+9$) равна 3. В этом ситуации, когда степень делителя больше степени делимого ($7 > 3$) разложение вида (1) возможно лишь в такой форме:

$$ 7x^3+9x^2-5x+9=0\cdot(5x^7+10x^6-17x^2+14x-7)+7x^3+9x^2-5x+9 $$

Ответ: частное есть 0, остаток – многочлен $7x^3+9x^2-5x+9$.

math1.ru

Математика. Деление уголком | Сайт Леонида Некина

Главная > Образование > Математика > МАТЕМАТИКА «С НУЛЯ» (учебник) >

<< Назад  |   Оглавление  |   Далее >>

Деление «уголком» — это, на мой взгляд, самая тяжелая, самая нудная тема во всей школьной математике. Тут нам придется всерьез поднапрячься. Пусть, однако, нас вдохновляет мысль, что весь последующий материал будет значительно легче и приятнее.

Прежде всего, рассмотрим деление на однозначное число. Допустим, мы хотим вычислить значение выражения

648 / 2.

Пользуясь свойствами умножения, мы можем расписать делимое таким образом:

648 =

 6  ∙ 100 +  4  ∙ 10 +  8  =

 3  ∙  2  ∙ 100 +  2  ∙  2  ∙ 10 +  4  ∙  2  =

( 3  ∙ 100 +  2  ∙ 10 +  4 )  ∙  2  =

 324  ∙  2 .

После этого становится очевидно, что частное от деления равно

648 / 2 = 324.

Но это мы взяли самый что ни на есть простейший случай, когда каждую отдельно взятую цифру делимого можно поделить на делитель. А вот пример несколько посложнее:

156 / 2 = ?

Здесь первая цифра оказалась меньше делителя. Поэтому, расписывая делимое, мы не будем отрывать ее от второй цифры:

156 =

 15  ∙ 10 +  6 .

Поскольку число  15  не делится нацело на 2, придется нам прибегнуть к делению с остатком. Представим результат такого деления в виде:

 15  =  7 ∙ 2  +  1  =  14  +  1 .

Теперь мы можем продолжать расписывать наше делимое дальше:

156 =

 15  ∙ 10 +  6  =

( 14  +  1 ) ∙ 10 +  6  =

 14   ∙ 10 +  1  ∙ 10 +  6  =

 14  ∙ 10 +  16  =

 7  ∙  2  ∙ 10 +  8  ∙  2  =

( 7  ∙ 10 +  8 ) ∙  2  =

 78  ∙  2 .

Отсюда моментально получаем ответ:

156 / 2 = 78.

Такого рода расчеты можно проводить в уме и сразу же писать ответ. Но мы сейчас перепишем их в виде краткой таблицы. Умение составлять такие таблицы нам пригодится, когда мы займемся делением на многозначные числа, когда всё окажется не так просто. Делимое и делитель запишем так:

 

 1 

 5 

 6 

 2 

 

   

   

 

   

   

При делении первых двух разрядов ( 15 ) на двойку получается  7  плюс еще какой-то остаток. С этим остатком мы разберемся чуть позже, а пока запишем  семерку  под чертой снизу от делителя (здесь у нас со временем будет выписан полный ответ):

 

 1 

 5 

 6 

 2 

 

   

   

 

 7

   

Умножаем на эту  семерку  наш делитель ( 2 ) и записываем ответ ( 14 ) под первыми двумя разрядами делимого ( 15 ):

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7

   

Теперь настало время вычислить остаток от деления  15-ти  на  2 . Он равен, очевидно,

 15  −  2  ∙  7  =  15  −  14 .

У нас уже всё подготовлено, чтобы выполнить это вычитание «столбиком»:

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

   

 

 1 

 

 

 

У нас получается  единица , к которой мы приписываем  шестерку  из следующего разряда делимого:

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

   

 

 1 

 6 

 

 

В результате такого приписывания у нас получается число  16 . Мы делим его на наш делитеть ( 2 ) и получаем  8 . Эту  восьмерку  пишем в строке ответа, под чертой снизу от делителя: 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

 8 

 

 1 

 6 

 

 

Ответ мы получили, однако правила составления таблицы таковы, что нам надо добавить в нее еще две строки. Мы должны формальным образом убедиться, что не потеряли остаток от деления. Умножаем делитель ( 2 ) на последнюю цифру ответа ( 8 ), приписываем результат ( 16 ) снизу к нашей таблице в последние два разряда делимого:

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

 8 

 

 1 

 6 

 

 

 

 1 

 6 

 

 

Вычитаем последнюю строку из предпоследней и получаем 0:

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

 8 

 

 1 

 6 

 

 

 

 1 

 6 

 

 

 

 

 0 

 

 

Этот последний нуль есть не что иное, как остаток от деления, который образовался бы в том случае, если бы мы рассматривали деление с остатком:

156 : 2 = 78 (ост. 0).

Чтобы получше это понять, возьмем похожий пример, в котором, однако, остаток не равен нулю:

157 : 2 = 78 (ост. 1).

Таблица для этого примера выглядит так:

 

 1 

 5 

 7

 2 

 

 1 

 4 

 

 7 

 8 

 

 1 

 7

 

 

 

 1 

 6 

 

 

 

 

 1

 

 

Здесь, опять-таки, остаток стоит в последней строке. Для полноты картины распишем наше делимое в таком виде:

157 =

 14  ∙ 10 +  17  =

 7  ∙  2  ∙ 10 +  8  ∙  2  + 1 =

( 7  ∙ 10 +  8 ) ∙  2  + 1 =

 7 8  ∙  2  + 1

Теперь мы готовы к тому, чтобы делить (нацело или с остатком) на многозначные числа. Это делается при помощи подобной же таблицы (именно из-за ее особого вида данная процедура получила название деление «уголком»). Допустим, требуется выполнить деление с остатком:

135674 : 259 = ?

Приступаем к заполнению таблицы:

 

                

 1 

 3 

 5 

 6 

 7 

 4 

 2 

 5 

 9 

 

 

 

 

 

 

 

 

 

 

В данном случае, чтобы найти первую цифру частного, надо взять первые четыре цифры делимого ( 1356 ) и получившееся число поделить (с остатком) на делитель ( 259 ). Почему надо взять именно первые четыре цифры делимого? Потому что если бы мы взяли хотя бы на одну цифру меньше, то получившееся число ( 135 ) оказалось бы меньше делителя ( 259 ), а это совсем не то, из чего можно было бы извечь полезную информацию. Итак, возьмем первые четыре цифры делимого и рассмотрим следующее деление с остатком:

 1356  :  259  = ?

Тут нам помогут приближенные вычисления, для которых, как мы знаем, вовсе необязательно, чтобы числа делились друг на друга нацело:

 1356  /  259  ≈ 1356 / 300 ≈ 1500 / 300 = 15 / 3 =  5 .

Зная результат приближенного деления, мы можем предположить, что, скорее всего,

 1356  :  259  =  5  (остаток — пока неважно какой).

Конечно, абсолютной уверенности у нас нет. Здесь вместо  пятерки  вполне может стоять  четверка  или  шестерка , однако вряд ли мы ошиблись больше, чем на одну единицу. Имея это в виду, тем не менее берем эту  пятерку  и заносим ее в нашу таблицу в строку ответа. После этого умножаем на нее делитель ( 259 ) и при этом записываем ответ под делимым в подходящие разряды:

 

 

 1 

 3 

 5 

 6 

 7 

 4 

 2 

 5 

 9 

 

   1 

   2 

   4

 

 

 

 

 

 

 259  ∙  5  =  

 1 

 2 

 9 

 5 

 

 

 5 

 

 

Здесь «маленькие» цифры — это побочный продукт процедуры умножения: мы познакомились с ними, когда учились умножать «в столбик». После того как умножение выполнено, они становятся больше не нужны: на них можно просто не обращать внимания. Выражение  259  ∙  5 , написанное слева от таблицы, помещено сюда только ради пояснения того, что мы делаем. К таблице оно, собственно, не принадлежит, и в будущем мы такие пояснения выписывать не будем. Тут важно отметить, что результат нашего умножения ( 1295 ) оказался меньше записанного над ним числа  1356 , составленного из первых четырех цифр делимого. Если бы это было не так, то это означало бы, что приближенное деление дало нам завышенный результат. Нам надо было бы тогда зачеркнуть  пятерку  в строке ответа, на ее место поставить  четверку  — после чего зачеркнуть и переделать все наши последующие вычисления. Но нам на этот раз повезло, и ничего переделывать не требуется.

Теперь выполняем вычитание в столбик и получаем:

 

 

 1 

 3 

 5 

 6 

 7 

 4 

 2 

 5 

 9 

 

   1 

   2 

   4

 

 

 

 

 

 

 259  ∙  5  =  

 1 

 2 

 9 

 5 

 

 

 5 

 

 

 

 

 

 6 

 1 

 

 

 

 

 

Внимательно приглядимся к полученной разности ( 61 ). Очень важно, что она оказалась меньше делителя ( 259 ). В противном случае мы пришли бы к выводу, что приближенное деление дало нам заниженный результат и нам пришлось бы теперь исправлять в строке ответа  пятерку  на  шестерку , а также переделывать все последующие вычисления. К счастью, этого не случилось. Приближенное вычисление нас не подвело, и мы теперь совершенно точно знаем, что,

 1356  :  259  =  5  (ост.  61 ).

Возвращаемся к таблице. К нашему остатку ( 61 ) приписываем  семерку  из следующего разряда делимого и приступаем к нахождению второй цифры ответа. Это делается с помощью точно такой же процедуры, что и раньше. Потом — очередь за третьей цифрой. В конце концов таблица принимает такой вид:

 

 

 1 

 3 

 5 

 6 

 7 

 4 

 2 

 5 

 9 

 

   1 

   2 

   4

 

 

 

 

 

 

 259  ∙  5  =  

 1 

 2 

 9 

 5 

 

 

 5 

 2 

 3 

 

 

 

 6 

 1 

 7 

 

 

 

 

 

 

 

   1

   1

 

 

 

 

 

 259  ∙  2  =   

 

 

 5 

 1 

 8 

 

 

 

 

 

 

 

 

 9 

 9 

 4 

 

 

 

 

 

 

 

   1

  2

 

 

 

 

 259  ∙  3  =   

 

 

 

 7 

 7 

 7 

 

 

 

 

 

 

 

 2 

 1 

 7 

 

 

 

Можно выписывать окончательный ответ:

135674 : 259 = 523 (ост. 217).

Самая большая неприятность в делении «уголком» состоит в том, что приближенные вычисления, к которым приходится прибегать по ходу дела, не дают сразу гарантированно правильного результата и нуждаются иногда в последующей коррекции. Впрочем, по мере тренировки, у нас выработается особое чутье и мы будем уже сразу почти наверняка знать, какие цифры следует писать в строке ответа, чтобы потом ничего больше не надо было исправлять и переделывать.

Разумеется, нам будут попадаться случаи, когда частное содержит нули. Каждый такой нуль позволит сделать в таблице небольшие сокращения. Вот пример такой таблицы:

 

 2 

 6 

 2 

 7

 4 

 0 

 8 

 7 

 

 

   2

   2 

  

 

 

 

 

 

 

 

 2 

 6 

 1 

 

 

 

 3 

 0 

 2 

 0 

 

 

 1 

 7 

 4 

 

 

 

 

 

 

 

   1

   1

 

 

 

 

 

 

 

 

 1 

 7 

 4 

 

 

 

 

 

 

 

 

 

 0 

 

 

 

 

 

Как и в случае умножения «в столбик», для того чтобы было удобнее писать «маленькие» цифры, нам может понадобиться

лист со специальной линовкой для вычислений (формат pdf).

Теперь остается только тренироваться, тренироваться и тренироваться.

 

Из «бесконечного» сборника типовых упражнений

Деление нацело на однозначное число

Деление с остатком на однозначное число

Деление с остатком на однозначное число с возможным «приписыванием» нулей

Деление нацело на двузначное число

Деление с остатком на двузначное число

Деление нацело на трехзначное число

Деление с остатком на трехзначное число

 

 

 

nekin.info

Подготовка школьников к ЕГЭ и ОГЭ в учебном центре «Резольвента» (Справочник по математике - Алгебра

      Напомним, что разделить натуральное число   a   на натуральное число   b   – это значит представить число   a   в виде:

a = bc + r ,

где частное   c   и остаток   r   – целые неотрицательные числа, причем остаток   r   удовлетворяет неравенству:

Электронный справочник по математике для школьников алгебра алгоритм деления уголком многочленов от одной переменной

      Если друг на друга делить многочлены, то возникает похожая ситуация.

      Действительно, при выполнении над многочленами операций сложения, вычитания и умножения результатом всегда будет многочлен. В частности, при перемножении двух многочленов, отличных от нуля, степень произведения будет равна сумме степеней сомножителей.

      Однако в результате деления многочленов многочлен получается далеко не всегда.

      Говорят, что один многочлен нацело (без остатка) делится на другой многочлен, если результатом деления является многочлен.

      Если же один многочлен не делится нацело на другой многочлен, то всегда можно выполнить деление многочленов с остатком, в результате которого и частное, и остаток будут многочленами.

      Определение. Разделить многочлен   a(x)   на многочлен   b(x)   с остатком – это значит представить многочлен   a(x)   в виде

a(x) = b(x) c(x) + r(x) ,

где многочлен   c(x)   – частное, а многочлен   r(x)   – остаток, причем, степень остатка удовлетворяет неравенству:

Электронный справочник по математике для школьников алгебра алгоритм деления уголком многочленов от одной переменнойЭлектронный справочник по математике для школьников алгебра алгоритм деления уголком многочленов от одной переменной

      Очень важно отметить, что формула

a(x) = b(x) c(x) + r(x)

является тождеством, т.е. равенством, справедливым при всех значениях переменной   x .

      При делении (с остатком или без остатка) многочлена на многочлен меньшей степени в частном получается многочлен, степень которого равна разности степеней делимого и делителя.

      Один из способов деления многочленов с остатком – это деление многочленов «уголком», что представляет собой полную аналогию с тем, как это происходит при делении целых чисел.

      К описанию этого способа деления многочленов мы сейчас и переходим.

      Пример. Заранее расположив многочлены по убывающим степеням переменной, разделим многочлен

2x4 – x3 + 5x2 – 8x + 1

на многочлен

x2 – x + 1 .

      Решение. Опишем алгоритм деления многочленов «уголком» по шагам:

  1. Делим первый член делимого   2x4   на первый член делителя   x2.   Получаем первый член частного   2x2 .
  2. Умножаем первый член частного   2x2   на делитель   x2 – x + 1,   а результат умножения
  3. 2x4 – 2x3 + 2x2

    пишем под делимым   2x4 – x3 + 5x2 – 8x + 1 .

  4. Вычитаем из делимого написанный под ним многочлен. Получаем первый остаток
  5. x3 + 3x2– 8x .

    Если бы этот остаток был равен нулю, или был многочленом, степень которого меньше, чем степень делителя ( в данном случае меньше   2),   то процесс деления был бы закончен. Однако это не так, и деление продолжается.

  6. Делим первый член остатка   x3   на первый член делителя   x2 .   Получаем второй член частного   x .
  7. Умножаем второй член частного   x   на делитель    x2 – x + 1 ,    а результат умножения
  8. x3 – x2 + x

    пишем под первым остатком   x3 + 3x2– 8x .

  9. Вычитаем из первого остатка написанный под ним многочлен. Получаем второй остаток
  10. 4x2 – 9x + 1 .

    Если бы этот остаток был бы равен нулю, или был многочленом, степень которого меньше, чем степень делителя, то процесс деления был бы закончен. Однако это не так, и деление продолжается.

  11. Делим первый член второго остатка   4x2   на первый член делителя   x2 .   Получаем третий член частного   4.
  12. Умножаем третий член частного   4   на делитель   x2 – x + 1 ,   а результат умножения
  13. 4x2 – 4x + 4

    пишем под вторым остатком.

  14. Вычитаем из второго остатка написанный под ним многочлен. Получаем третий остаток

    – 5x – 3 .

    Степень этого остатка равна   1,   что меньше, чем степень делителя. Следовательно, процесс деления закончен.

  15. Таким образом,
  16. 2x4 – x3 + 5x2 – 8x + 1 == (x2 – x + 1) (2x2 + x ++ 4) – 5x – 3 ,

    где

Электронный справочник по математике для школьников алгебра алгоритм деления уголком многочленов от одной переменнойЭлектронный справочник по математике для школьников алгебра алгоритм деления уголком многочленов от одной переменнойЭлектронный справочник по математике для школьников алгебра алгоритм деления уголком многочленов от одной переменной

      Запись изложенного процесса деления многочленов «уголком» имеет следующий вид:

Электронный справочник по математике для школьников алгебра алгоритм деления уголком многочленов от одной переменной

Подготовка к ЕГЭ и ОГЭ в учебном центре Резольвента

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

      У нас также для школьников организованы

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru

Как делить уголком

Сейчас калькуляторы встроены во многие гаджеты. Но когда под рукой нет ни одного из них, выручат самые простые навыки. Делить уголком можно не только с помощью карандаша и бумаги, но и веточкой на земле или пальцем на песке.

Вам понадобится

  • - листок бумаги;
  • - ручка или карандаш.

Инструкция

  • Деление на однозначное число без остатка - самый простой случай для деления уголком. Для примера разделите 536 на 4. Для этого запишите их рядом на одной строчке, а чтобы не перепутать, поставьте между них уголок. Под горизонтальной чертой будете писать частное или результат деления. Сначала разделите первую цифру делимого, то есть 5 на 4. Запишите под чертой 1, под пятеркой - четверку и вычтите из первой вторую. Разницу запишите внизу. Рядом напишите следующую цифру делимого, то есть 3. Получается 13. Разделите на 4, результат - тройку - пишите справа, а остаток опять снесите вниз. Перенесите к нему последнюю цифру первоначального числа, получится 16. Разделите на 4 и запишите четверку - последнюю цифру ответа. Получилось, что одна четвертая от 536 это 134.Чтобы проверить результат перемножьте столбиком 134 и 4. Получится 536. Если проверка не сработала, ищите ошибку в переносе цифр при делении уголком.
  • Деление круглых чисел принципиально ничем не отличается. Только перед началом деления избавьтесь от лишних нулей. Под такими понимаются разряды, которые есть в обоих числах. Например, если надо разделить 371000 на 700, то перед делением уголком зачеркните последние два нуля в каждом числе. То есть делите 3710 на 7. Обязательно надо зачеркивать именно одинаковое число нулей, иначе результат окажется неверным.
  • При делении правильных дробей проделайте обратную операцию: добавьте порядков в делимое, чтобы их число соответствовало делителю. Например, если вы делите 5 на 16, то припишите один ноль. Если 5 надо разделить на 160, то припишите два нуля. Но при этом не забудьте поставить точку и такое же число нулей в частном. В первом случае ответ начнется с десятых долей, во втором - с сотых. Другими словами, деление уголком - это простейший способ перевести правильную дробь в десятичную.

completerepair.ru

Деление с остатком | Математика

Если одно натуральное число не делится на другое нацело, можно выполнить деление с остатком.

Как и при делении нацело, числа, которые делим, называются делимое и делитель.

Результат деления называется неполным частным.

Число, которое остаётся от делимого в результате деления (это число меньше делителя), называется остаток.

delenie-s-ostatkom

Чтобы выполнить проверку, надо:

  1. Неполное частное умножить на делитель.
  2. К полученному произведению прибавить остаток.
  3. В результате должно получиться делимое.

proverka-deleniya-s-ostatkom

Рассмотрим конкретные примеры деления с остатком.

Примеры.

Выполнить деление чисел с остатком и сделать проверку:

1) 29 : 8;

2) 613 : 6;

3) 279 : 10;

4) 784 : 23;

5) 4057 : 35;

6) 8591 : 62;

7) 52779 : 2524;

8) 15 : 79.

Решение: 1)

primery-deleniya-s-ostatkom29 : 8 = 3 (остаток 5).

Проверка:

3 · 8 + 5 = 24 + 5 = 29.

2)

razdelit-s-ostatkom

513 : 6 = 85 (остаток 3).

513 — делимое, 6 — делитель, 85 — неполное частное, 3 — остаток.

Проверка:

85 · 6 + 3 = 510 + 3 = 513.

3)

kak-delit-s-ostatkom279 : 10 = 27 (остаток 9).

279 — делимое, 10 — делитель, 27 — неполное частное, 9 — остаток.

Проверка:

27 · 10 + 9 = 270 + 9 = 279.

4)

primery-na-delenie-s-ostatkom

784 : 23 = 34 (остаток 2).

784 — делимое, 23 — делитель, 34 — неполное частное, 2 — остаток.

Проверка:

34 · 23 + 2 = 782 + 2 = 784.

5)

delenie-chisel-s-ostatkom

4057 : 35 = 115 (остаток 32).

4057 — делимое, 35 — делитель, 115 — неполное частное, 32 — остаток.

Проверка:

115 · 35 + 32 = 4025 + 32 = 4057.

6)

kak-proverit-deleniya-s-ostatkom

8591 : 62 = 138 (остаток 35).

8591 — делимое, 62 — делитель, 138 — неполное частное, 35 — остаток.

Проверка:

138 · 62 + 35 = 8556 + 35 = 8591.

7)

kak-razdelit-s-ostatkom

52779 : 2524 = 20 (остаток 2299).

52779 — делимое, 2524 — делитель, 20 — неполное частное, 35 — 2299.

Проверка:

20 · 2524 + 2299 = 50480 + 2299= 52779.

8) 15 : 79 = 0 (остаток 15).

15 — делимое, 79 — делитель, 0 — неполное частное, 15 — остаток.

( Если делимое меньше делителя, неполное частное всегда равно нулю, а остаток — делимому).

www.for6cl.uznateshe.ru

4. Деление с остатком в . Схема Горнера.

Определение. Разделить с остатком многочленна ненулевой многочлен- значит найти многочленытакие, что

1) и 2).

При этом многочлен называетсяостатком, а-неполным частным.

Теорема 8.2.(О делении многочленов с остатком в). Для любых многочленовсуществуют, причём единственные многочленытакие, что 1)и 2).

Таким образом, деление с остатком любого многочлена на ненулевой многочлен с коэффициентами из одного и того же поля всегда возможно, причём единственным образом.

Деление с остатком многочленов производится, как и для натуральных чисел, уголком, начиная с верхнего правого угла.

Схема Горнера– это алгоритм деления с остатком многочленана.

Если , то по теореме Безу существует единственный многочлентакой, что. Тогда

получаем следующую систему соотношений:

Замечаем следующую зависимость: получается как суммаи. Заготовкой для вычислений является таблица:

Для того, чтобы заполнить первую слева незаполненную клеточку во второй строке, нужно умножить на элемент, стоящий в предыдущей клеточке второй строки, и результат сложить с элементом, стоящим над вычисляемой клеточкой в первой строке.

Все дальнейшие вычисления производим в таблице:

Пример 17. Разделить с остаткомна.

В данном случае . Заполняем заготовку:

Далее производим вычисления:

7

-3

0

2

-5

1

-2

7

-17

34

-66

127

-253

Значит, .

В частности, .

Схема Горнера применяется во многих случаях. В частности, при определении кратности корня многочлена.

Определение. Пусть, где. Тогданазываетсякорнем кратности многочлена. Если, тоназываетсяпростымкорнем.

Пример 18.Найти кратность корнямногочлена.

По теореме Безу кратность корня равна количеству деленийнас нулевым остатком. Все вычисления выполняем в одной таблице:

1

-2

5

-13

14

-5

1

1

-1

4

-9

5

0

1

1

0

4

-5

0

1

1

1

5

0

1

1

2

70

Значит, ⋮, но не делится на. Поэтому кратность корнямногочленаравна 3.

Заметим, что при вычислении значений в третьей и т.д. строках таблицы, требуемые по схеме Горнера числа брали из стоящей выше строки.

5. Наибольший общий делитель. Взаимная простота и неприводимость.

Определение.Многочленназываетсяобщим делителем(ОД) многочленов, если каждый из этих многочленов делится наD.

Многочлен dназывается наибольшим общим делителем многочленов, если 1)d- ОД этих многочленов; 2)dделится на любой ОД многочленов.

Обозначение.Нормированным НОД многочленовназывается такой НОД, старший коэффициент которого равен 1. Обозначим его через (,).

Теорема 9.2(Об определяющих свойствах НОД).

1)Если НОД двух многочленов существует, то он определён с точностью до ассоциированности.

2)Если ⋮инормирован, то(,)=.

3)Если , где- многочлены изи, то.

4)Если хотя бы один из многочленов не равен0, то их НОД существует.

Алгоритм Евклидаили метод последовательного деления с остатком применим и в.Но в случае многочленов модуль (норма в) заменяется на степень (норма в). Пустьи– ненулевые многочлены. Делимнас остаткомr1. Еслиr1≠0, то делимс остаткомr2наr1. Еслиr2≠0, то делимr1наr2с остаткомr3и т.д. до тех пор, пока очередной остатокrn+1не станет равным нулю:

, где,r1– многочлены изи,

, где, r2 - – многочлены изи,

………………

rn-2=rn-1∙n-1+rn, где n-1, rn -– многочлены изи,

rn-1=rn∙n+0, где n –многочлен из.

Теорема 10.2.Последний ненулевой остаток в алгоритме Евклида для ненулевых многочленов равен их наибольшему делителю.

Следствие.Для любых ненулевых многочленовизсуществуюттакие, что(линейное выражение наибольшего общего делителя двух ненулевых многочленов из).

Определение. Многочленыназываютсявзаимно простыми, если, т.е. общими делителями этих многочленов могут быть только ненулевые элементы поля.

Теорема 11.2. (Основные свойства взаимной простоты).

1) Многочлены взаимно просты тогда и только тогда, когда существуют многочленытакие, что.

2) Если многочлены взаимно простые и⋮, то⋮для любого многочлена.

Определения. Многочленстепени большей или равной 1 называетсяприводимымнад полем, если существуют многочленытакие, что

1) и 2).

Многочлен степени большей или равной 1 называетсянеприводимымнад полем, если его нельзя представить в виде, где 1)и

2) .

Пример 19.1) Многочленприводим над полями. 2) Многочленприводим над полями, но неприводим над полем. 3) Многочленприводим над полем, но неприводим над полями.

Замечания. 1) Многочлены, являющиеся элементами поля(т.е. многочлены нулевой степени и нулевой многочлен), не являются ни приводимыми, ни неприводимыми. 2) Многочлен первой степени неприводим над любым полем, содержащим его коэффициенты. 3) Многочлен второй степени изприводим над полемтогда и только тогда, когда его корни лежат в поле. 4) Многочлен третьей степени изприводим над полемтогда и только тогда, когда хотя бы один его корень лежит в поле.

Теорема 12. 2. (Свойства неприводимости).

  1. Если ,неприводим нади⋮, то либо, либо.

  2. Если ,и- неприводим над полем, то либо⋮, либо.

  3. Если взаимно прост с многочленами, то он взаимно прост и с их произведением.

  4. Если ⋮инеприводим, то либо⋮, либо⋮.

  5. Если ⋮, гденеприводимые и неассоциированные между собой, то⋮, т.е. и на их произведение.

Теорема 13.2. Всякий многочленстепени больше или равной 1 либо неприводим над, либо разлагается в произведение неприводимых надмногочленов, причём это разложение единственно с точностью до ассоциированности и порядка следования сомножителей.

studfiles.net