Что такое высота треугольника. Что такое высоты треугольника


Высота треугольника | Треугольники

В отличие от медианы или биссектрисы, высота треугольника может быть расположена как внутри треугольника, так и вне его.

Определение.

Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противолежащую сторону.

risunok vyisotyi treugolnika

 

На рисунке BF — высота, проведенная из вершины B к стороне AC.

 

 

Все три высоты треугольника пересекаются в одной точке. Эта точка называется ортоцентром треугольника.

vyisota treugolnika

 

Высоты остроугольного треугольника расположены строго внутри треугольника.

Соответственно, точка пересечения высот также находится внутри треугольника.

В прямоугольном треугольнике две высоты совпадают со сторонами. (Это высоты, проведенные из вершин острых углов к катетам).

Высота, проведенная к гипотенузе, лежит внутри треугольника (позднее рассмотрим ее свойства).

vyisota v treugolnike

AC — высота, проведенная из вершины С к стороне AB.

AB — высота, проведенная из вершины B к стороне AC.

AK — высота, проведенная из вершины прямого угла А к гипотенузе ВС.

Высоты прямоугольного треугольника пересекаются в вершине прямого угла (А — ортоцентр).

В тупоугольном треугольника внутри треугольника лежит только одна высота — та, которая проведена из вершины тупого угла.

Две другие высоты лежат вне треугольника и опущены к продолжению сторон треугольника.

vyisotyi treugolnika  AK — высота, проведенная к стороне BC.

BF — высота, проведенная к продолжению стороны АС.

CD — высота, проведенная к продолжению стороны AB.

 

Точка пересечения высот тупоугольного треугольника также находится вне треугольника:

peresechenie vyisot treugolnika

 

H — ортоцентр треугольника ABC.

www.treugolniki.ru

Высота треугольника - это... Что такое Высота треугольника?

Высота в треугольниках различного типа

Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника

Свойства

  • Высоты треугольника пересекаются в одной точке, называемой ортоцентром. — Это утверждение легко доказать, используя векторное тождество, справедливое для любых точек A, B, C, E, не обязательно даже лежащих в одной плоскости:

(Для доказательства тождества следует воспользоваться формулами

В качестве точки E следует взять пересечение двух высот треугольника.)

Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:

  • Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
  • Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
  • При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.

Минимальная высота в треугольнике всегда проходит внутри этого треугольника.

Основные соотношения

где  — площадь треугольника,  — длина стороны треугольника, на которую опущена высота.

где  — основание.

  •  — высота в равностороннем треугольнике.

Теорема о высоте прямоугольного треугольника

Если высота длиной h, проведённая из вершины прямого угла, делит гипотенузу длиной c на отрезки m и n, соответствующие b и a, то верны следующие равенства:

Высота похожа на кота, Который, выгнув спину, И под прямым углом Соединит вершину И сторону хвостом.

См. также

Ссылки

dic.academic.ru

Что такое высота треугольника

Геометрия покажется не такой сложной, если знать ее законы. В пространственных построениях есть не только строгая логика, но и своеобразная поэзия. Но сначала нужно запомнить термины и определения.

Треугольник — это плоский многоугольник, ограниченный тремя отрезками прямой. Эти отрезки называются сторонами, а точки пересечения сторон — вершинами. Все три внутренних угла фигуры могут быть разными. Если один угол прямой или тупой, то два других обязательно острые. Три угла треугольника в сумме составляют триста шестьдесят градусов. Внутри треугольника можно провести разные линии. Свойства некоторых из них изучены и служат для определения геометрических параметров. К таким особым линиям относятся высоты. Высотой треугольника называется перпендикуляр, опущенный из вершины угла на противоположную сторону. Сторона в этом случае является основанием треугольника. Очевидно, что у данной фигуры может быть не более трех высот. В прямоугольном треугольнике можно провести только одну высоту — из вершины прямого угла на гипотенузу. В тупоугольном треугольнике высоты из вершин острых углов проводятся на продолжение сторон и находятся за пределами площади, но тем не менее это именно высоты треугольника со всеми их свойствами. Проведите высоту к любой из сторон произвольного треугольника, и исходная фигура будет разделена на два прямоугольных треугольника. Наличие прямого угла облегчает решение геометрических задач. Для прямоугольных треугольников известны многие соотношения, начиная с теоремы Пифагора. Высота входит в различные формулы решения треугольников. Самая известная — формула площади, которая для треугольника равна половине произведения его основания на высоту. В правильных многоугольниках случается совпадение высот с другими «замечательными» линиями — медианой, биссектрисой или осью симметрии. В равностороннем треугольнике все три высоты равны между собой и являются одновременно медианами и биссектрисами.

completerepair.ru

Высота треугольника — WiKi

Высота в треугольниках различного типа

Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону (точнее, на прямую, содержащую противоположную сторону). В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника у тупоугольного треугольника.

Свойства точки пересечения трех высот треугольника (ортоцентра)

  Высоты треугольника
  • Все три высоты треугольника пересекаются в одной точке, называемой ортоцентром. Это утверждение легко доказать, используя векторное тождество, справедливое для любых точек A, B, C, E{\displaystyle A,\ B,\ C,\ E} , не обязательно даже лежащих в одной плоскости:
EA→⋅BC→+EB→⋅CA→+EC→⋅AB→=0{\displaystyle {\overrightarrow {EA}}\cdot {\overrightarrow {BC}}+{\overrightarrow {EB}}\cdot {\overrightarrow {CA}}+{\overrightarrow {EC}}\cdot {\overrightarrow {AB}}=0} 

(Для доказательства тождества следует воспользоваться формулами

AB→=EB→−EA→,BC→=EC→−EB→,CA→=EA→−EC→{\displaystyle {\overrightarrow {AB}}={\overrightarrow {EB}}-{\overrightarrow {EA}},\,{\overrightarrow {BC}}={\overrightarrow {EC}}-{\overrightarrow {EB}},\,{\overrightarrow {CA}}={\overrightarrow {EA}}-{\overrightarrow {EC}}} 

В качестве точки E следует взять пересечение двух высот треугольника.)

  • Ортоцентр изогонально сопряжен центру описанной окружности.
  • Ортоцентр лежит на одной прямой с центроидом, центром описанной окружности и центром окружности девяти точек (см. прямая Эйлера).
  • Ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник.
  • Центр описанной около треугольника окружности служит ортоцентром треугольника с вершинами в серединах сторон данного треугольника. Последний треугольник называют дополнительным треугольником по отношению к первому треугольнику.
  • Последнее свойство можно сформулировать так: Центр описанной около треугольника окружности служит ортоцентром дополнительного треугольника.
  • Точки, симметричные ортоцентру треугольника относительно его сторон, лежат на описанной окружности.
  • Точки, симметричные ортоцентру треугольника относительно середин сторон, также лежат на описанной окружности и совпадают с точками, диаметрально противоположными соответствующим вершинам.
  • Если О — центр описанной окружности ΔABC, то OH→=OA→+OB→+OC→{\displaystyle {\overrightarrow {OH}}={\overrightarrow {OA}}+{\overrightarrow {OB}}+{\overrightarrow {OC}}}  ,
    • |OH|=9R2−(a2+b2+c2){\displaystyle |OH|={\sqrt {9R^{2}-(a^{2}+b^{2}+c^{2})}}}  , где R{\displaystyle R}  — радиус описанной окружности; a,b,c{\displaystyle a,b,c}  — длины сторон треугольника.
  • Расстояние от вершины треугольника до ортоцентра вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.
  • Любой отрезок, проведенный из ортоцентра до пересечения с описанной окружностью всегда делится окружностью Эйлера пополам. Ортоцентр есть центр гомотетии этих двух окружностей.
  • Теорема Гамильтона. Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника, имеющих ту же самую окружность Эйлера (окружность девяти точек), что и исходный остроугольный треугольник.
  • Следствия теоремы Гамильтона:
    • Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника Гамильтона, имеющих равные радиусы описанных окружностей.
    • Радиусы описанных окружностей трёх треугольников Гамильтона равны радиусу окружности, описанной около исходного остроугольного треугольника.
  • В остроугольном треугольнике ортоцентр лежит внутри треугольника; в тупоугольном — вне треугольника; в прямоугольном — в вершине прямого угла.

Свойства высот равнобедренного треугольника

  • Если в треугольнике две высоты равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса), и третья высота одновременно является медианой и биссектрисой того угла, из которого она выходит.
  • Верно и обратное: в равнобедренном треугольнике две высоты равны, а третья высота одновременно является медианой и биссектрисой.
  • У равностороннего треугольника все три высоты равны.

Свойства оснований высот треугольника

  • Основания высот образуют так называемый ортотреугольник, обладающий собственными свойствами.
  • Описанная около ортотреугольника окружность - окружность Эйлера. На этой окружности также лежат три середины сторон треугольника и три середины трёх отрезков, соединяющих ортоцентр с вершинами треугольника.
  • Другая формулировка последнего свойства:
    • Теорема Эйлера для окружности девяти точек. Основания трёх высот произвольного треугольника, середины трёх его сторон (основания его внутренних медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (на окружности девяти точек).
  • Теорема. В любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному.
  • Теорема. В треугольнике отрезок, соединяющий основания двух высот треугольника, лежащие на двух сторонах, антипараллелен третьей стороне, с которой он не имеет общих точек. Через два его конца, а также через две вершины третьей упомянутой стороны всегда можно провести окружность.

Другие свойства высот треугольника

Свойства минимальной из высот треугольника

Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:

  • Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
  • Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
  • При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
  • Минимальная высота в треугольнике всегда проходит внутри этого треугольника.

Основные соотношения

  • ha=b⋅sin⁡γ=c⋅sin⁡β,{\displaystyle h_{a}=b{\cdot }\sin \gamma =c{\cdot }\sin \beta ,} 
  • ha=2⋅Sa,{\displaystyle h_{a}={\frac {2{\cdot }S}{a}},}  где S{\displaystyle S}  — площадь треугольника, a{\displaystyle a}  — длина стороны треугольника, на которую опущена высота.
  • ha2=12(b2+c2−12(a2+(b2−c2)2a2)){\displaystyle h_{a}^{2}={\frac {1}{2}}(b^{2}+c^{2}-{\frac {1}{2}}(a^{2}+{\frac {(b^{2}-c^{2})^{2}}{a^{2}}}))} 
  • ha=b⋅c2⋅R,{\displaystyle h_{a}={\frac {b{\cdot }c}{2{\cdot }R}},}  где b⋅c{\displaystyle b{\cdot }c}  - произведение боковых сторон, R−{\displaystyle R-}  радиус описанной окружности
  • ha:hb:hc=1a:1b:1c=(b⋅c):(a⋅c):(a⋅b).{\displaystyle h_{a}:h_{b}:h_{c}={\frac {1}{a}}:{\frac {1}{b}}:{\frac {1}{c}}=(b{\cdot }c):(a{\cdot }c):(a{\cdot }b).} 
  • 1ha+1hb+1hc=1r{\displaystyle {\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}={\frac {1}{r}}} , где r{\displaystyle r}  — радиус вписанной окружности.
  • S=1(1ha+1hb+1hc)⋅(1ha+1hb−1hc)⋅(1ha+1hc−1hb)⋅(1hb+1hc−1ha){\displaystyle S={\frac {1}{\sqrt {({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}-{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{b}}}){\cdot }({\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{a}}})}}}} , где S{\displaystyle S}  — площадь треугольника.
  • a=2ha⋅(1ha+1hb+1hc)⋅(1ha+1hb−1hc)⋅(1ha+1hc−1hb)⋅(1hb+1hc−1ha){\displaystyle a={\frac {2}{h_{a}{\cdot }{\sqrt {({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}-{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{b}}}){\cdot }({\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{a}}})}}}}} , a{\displaystyle a}  — сторона треугольника к которой опускается высота ha{\displaystyle h_{a}} .
  • Высота равнобедренного треугольника, опущенная на основание: hc=12⋅4a2−c2,{\displaystyle h_{c}={\frac {1}{2}}{\cdot }{\sqrt {4a^{2}-c^{2}}},} 
где c{\displaystyle c}  — основание, a{\displaystyle a}  — боковая сторона.
  • h=32⋅a{\displaystyle h={\tfrac {\sqrt {3}}{2}}{\cdot }a}  — высота в равностороннем треугольнике со стороной a{\displaystyle a} .

Теорема о высоте прямоугольного треугольника

Теорема о проекциях

Высота похожа на кота,Который, выгнув спину,И под прямым угломСоединит вершинуИ сторону хвостом.[3]

Вариации по теме. Высоты в четырехугольнике

Теорема[4]. Пусть ABCD{\displaystyle ABCD}  – вписанный четырёхугольник, A1{\displaystyle A_{1}}  – основание перпендикуляра (высоты), опущенного из вершины A{\displaystyle A}  на диагональ BD{\displaystyle BD} ; аналогично определяются точки B1,C1,D1{\displaystyle B_{1},C_{1},D_{1}} . Тогда точки A1,B1,C1,D1{\displaystyle A_{1},B_{1},C_{1},D_{1}}  лежат на одной окружности.

Примечания

  1. ↑ Зетель С.И. Новая геометрия треугольника. Пособие для учителей. 2-е издание.. — М.: Учпедгиз, 1962. — С. 137-138, п. 126, теорема, следствия.
  2. ↑ Корн Г.А., Корн Т.М. Справочник по математике для научных работников и инженеров. — М.: «Наука», 1974. — 832 с.
  3. ↑ Сафронова Вера Николаевна,. Урок геометрии в 7-м классе по теме: "Медиана, биссектриса, высота" (рус.). Открытый урок. Издательский дом «Первое сентября». Проверено 19 июля 2017.
  4. ↑ Вокруг задачи Архимеда. Упр. 7, рис. 11, следствие, c. 5.

Ссылки

ru-wiki.org

Что такое вершины и высоты треугольника?И как понять где они находятся?

Вершины это углы. Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону

вершины это ну точки по которым строится треугольник а где расположены это наверно координаты может

вершины-это все точки (края) треугольника их три, например дан треугольник АВС вершины А, В, С, высота это отрезок внутри проведенный от вершины к противоположной стороне треугольника перпендикулярно

Вершины это углы. Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону

touch.otvet.mail.ru

Высота треугольника, ортоцентр

Расстояние между вершиной треугольника и противоположной стороной называется высотой. Формально, это самый короткий отрезок между вершиной треугольника и (с возможным продлением) противоположной стороной.

Высота треугольника

Каждый треугольник имеет 3 высоты которые пересекаются в одной точке - ортоцентре. Если мы используем стандартные обозначения, в треугольнике ABC, есть три высоты: AHa, BHb, CHc. Эти три отрезка пересекаются в одной точке - ортоцентре (точка H на рисунке) треугольника. Для тупого треугольника (имеющего один угол, больше чем 90°), ортоцентр находится за пределами треугольника.

Высоты остроугольного треугольника

Высоты остроугольного треугольника

Ортоцентр - это точка внутри треугольника.

∠ AHB = 180 - γ = α + β∠ BHC = 180 - α = β + γ∠ AHC = 180 - β = α + γ∠ AHHc = β, ∠ BHHc = α, ∠ BHHa = γ

Высоты тупоугольного треугольника

Высоты тупоугольного треугольника

Ортоцентр находится вне треугольнка.Две высоты также всегда лежат вне треугольника.∠ AHHc = ∠ CBA = β∠ HcHB = ∠ CAB = α

Правый треугольник

altitudes of a right triangle

Высота AHa совпадает с AC.Высота BHb совпадает с BC.Ортоцентр H совпадает с C.∠ ACHc = β, ∠ BCHc =α

Формулы

$AH_a:BH_b:CH_c=\frac{1}{a}:\frac{1}{b}:\frac{1}{c}$

$\frac{a}{AH_a}=\frac{b}{BH_b}=\frac{c}{\frac{AH_aBH_b}{CH_c}}$

R - радиус описанной окружностиr - радиус вписанной окружностиp - полуперимерт: (a + b + c)/2

$AH_a=b \sin\gamma=c \sin\beta=\frac{a \sin\beta \sin\gamma}{\sin\alpha}=$

$=2R \sin\beta\ \sin\gamma=\frac{bc}{2R}=\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}$

$BH_b=a\ \sin\gamma=c\ \sin\alpha=\frac{b\ \sin\alpha\ \sin\gamma}{\sin\beta}=$$=2R\ \sin\alpha \sin \gamma=\frac{ac}{2R}=\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}$

$CH_c=a\ \sin\beta=b\ \sin\alpha=\frac{c\ \sin\alpha\ \sin\beta}{\sin\gamma}=$$=2R\ \sin\alpha \sin \beta=\frac{ab}{2R}=\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}$

$\frac{1}{AH_a}+\frac{1}{BH_b}+\frac{1}{CH_c}=\frac{1}{r}$

www.math10.com

Как найти высоту треугольника?

Для решения многих геометрических задач требуется найти высоту заданной фигуры. Эти задачи имеют прикладное значение. При проведении строительных работ определение высоты помогает вычислить необходимое количество материалов, а также определить, насколько точно сделаны откосы и проемы. Часто для построения выкроек требуется иметь представление о свойствах геометрических фигур.

У многих людей, несмотря на хорошие оценки в школе, при построении обычных геометрических фигур возникает вопрос о том, как найти высоту треугольника или параллелограмма. Причем определение высоты треугольника является самым сложным. Это происходит потому, что треугольник может быть острым, тупым, равнобедренным или прямоугольным. Для каждого из видов треугольников существуют свои правила построения и расчета.

Как найти высоту треугольника, в котором все углы острые, графическим способом

Если все углы у треугольника острые (каждый угол в треугольнике меньше 90 градусов), то для нахождения высоты необходимо сделать следующее.

  1. По заданным параметрам выполняем построение треугольника.
  2. Введем обозначения. А, В и С будут вершинами фигуры. Углы, соответствующие каждой вершине – α, β, γ. Противолежащие этим углам стороны – a, b, c.
  3. Высотой называется перпендикуляр, опущенный из вершины угла к противоположной стороне треугольника. Для нахождения высот треугольника проводим построение перпендикуляров: из вершины угла α к стороне a, из вершины угла β к стороне b и так далее.
  4. Точку пересечения высоты и стороны a обозначим h2, а саму высоту h2. Точка пересечения высоты и стороны b будет h3, высота соответственно h3. Для стороны c высота будет h4, а точка пересечения h4.

Далее для каждого вида треугольника будем использовать те же обозначения сторон, углов, высот и вершин треугольников.

Высота в треугольнике с тупым углом

Теперь рассмотрим, как найти высоту треугольника, если один угол тупой (больше 90 градусов). В этом случае высота, проведенная из тупого угла, будет внутри треугольника. Остальные две высоты будут находиться за пределами треугольника.

Пусть в нашем треугольнике углы α и β будут острыми, а угол γ – тупой. Тогда для построения высот, выходящих из углов α и β, надо продолжить противоположные им стороны треугольника, чтобы провести перпендикуляры.

Как найти высоту равнобедренного треугольника

У такой фигуры есть две равные стороны и основание, при этом углы, находящиеся при основании, также являются равными между собой. Это равенство сторон и углов облегчает построение высот и их вычисление.

Сначала нарисуем сам треугольник. Пусть стороны b и c, а также углы β, γ будут соответственно равными.

Теперь проведем высоту из вершины угла α, обозначим ее h2. Для равнобедренного треугольника эта высота будет одновременно биссектрисой и медианой.

Далее построим две другие высоты: h3 для стороны b и угла β, h4 для стороны c и угла γ. Эти высоты будут равными по длине.

Для основания можно сделать только одно построение. Например, провести медиану – отрезок, соединяющий вершину равнобедренного треугольника и противоположную сторону, основание, для нахождения высоты и биссектрисы. А для вычисления длины высоты для двух других сторон можно построить только одну высоту. Таким образом, чтобы графически определить, как вычислить высоту равнобедренного треугольника, достаточно найти две высоты из трех.

Как найти высоту прямоугольного треугольника

У прямоугольного треугольника определить высоты намного проще, чем у других. Это происходит потому, что сами катеты составляют прямой угол, а значит, являются высотами.

Для построения третьей высоты, как обычно, проводится перпендикуляр, соединяющий вершину прямого угла и противоположную сторону. В итоге для того, чтобы узнать, как найти высоту треугольника в данном случае, требуется только одно построение.

fb.ru